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SINGULARITIES OF PLANE RATIONAL CURVES VIA PROJECTIONS

ALESSANDRA BERNARDI, ALESSANDRO GIMIGLIANO, AND MONICA IDA

ABSTRACT. We consider the parameterization f = (fo : f1 : f2) of a plane rational curve C' of degree n,
and we study the singularities of C' via such parameterization. We use the projection from the rational
normal curve C,, C P" to C and its interplay with the secant varieties to C),. In particular, we define via f
certain O-dimensional schemes X3, C P¥, 2 < k < (n — 1), which encode all information on the singularities
of multiplicity > k of C (e.g. using X2 we can give a criterion to determine whether C' is a cuspidal curve
or has only ordinary singularities). We give a series of algorithms which allow one to obtain information
about the singularities from such schemes.

1. INTRODUCTION

The study of plane rational curves is quite classical in algebraic geometry, and it is also an interesting
subject for applications, for example it is very relevant in Computer Aided Design (CAD). Since rational
curves are the ones that can be parameterized, it is quite of interest to get information on the curve from
its parameterization (implicit equation, structure of singularities, e.g. see [SCG, SWP, CSC, CKPU]).
In this paper we tackle the problem of determining the singularities of a plane rational curve from its
parameterization. This is a problem which has been much treated in the literature: see the beautiful work
[CKPU], where the syzygies of the ideal generated by the polynomials giving the parameterization are used
in order to determine the singularities of the curve and their structure (multiplicity, branches, infinitely near
other singularities).

This idea has been developed also in [SCG] and [CWL], where “ p-bases ” are exploited for the parame-
terized curve. We used this approach in a previous paper, [BGI3], in order to find how a plane curve could
be viewed as a projection of a rational curve contained in a rational normal scroll.

In the present paper we describe the structure of singular points by using the parameterization, but from a
different point of view with respect to the one of [BGI3]. In order to study the singularities of a plane rational
curve C of degree n, we use the fact that the parameterization of C' defines a projection 7 : P* --» P2, which
is generically one-to-one from the rational normal curve C,, C P" onto its image, and 7(C,,) = C C P2. If P
is a singular point of multiplicity m of C' C P2, then there is an (m — 1)-dimensional m-secant space H to
C,, in P" such that 7(H) = P. The center of projection of 7 is a (n — 3)-linear space II, and II N H has to
be (m — 2)-dimensional, in order to have that 7(H) is a point. We have that H N C,, (and H N1II) contains
all the information about the singularity P of C' (multiplicity, branches, infinitely near points, e.g. see [M]);
the problem is how to extract this information from these data.

Our strategy here is to consider, for k = 2,...,n — 1, the spaces PF = P(K|[s,t];) that parameterize
01(Cr), the k-secant variety of (k — 1)-dimensional k-secant spaces to C,, and their intersection with the
center of projection II, which is determined by the parameterization of C. Such study yields to considering
certain O-dimensional schemes, X;, C P*, which parameterize the k-secant (k — 1)-spaces that get contracted
to a point by the projection 7, so that they encode all the information on the singularities of C. For example,
we can use the scheme X» to give simple necessary and sufficient conditions for the curve C' to be a cuspidal
one or to have only ordinary singularities (see Proposition 3.1).

This approach stems out from a study of the so-called Poncelet varieties associated to rational curves
(see [ISV]); in a previous paper (see [BGI2]) we considered the singularities of Poncelet surfaces in order
to determine the existence of triple points on C. Here that approach has been generalized and potentially
covers all kind of singular points on C. The interplay between secant varieties oy (C,,) of rational normal
curves and O-dimensional subschemes of the space P¥ parameterizing the P*~1 k-secant spaces of C,, has
also been studied by the authors in [BGI1].
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Our choice has been to give our main results in the form of algorithms that can be used to study a
given rational curve C, for example with the help of programs as Cocoa [COCOA], Macauly2 [m2] or Bertini
[Bertini]. Our Algorithm 1 allows one to compute the number N of singularities of C' and also the number N,
of singularities of multiplicity k, for k = 2,...,n—1. We also give a variation of Algorithm 1 (c.f. Algorithm
1.1) that allows one to compute, for each multiplicity, the number of singular points with given number of
branches and multiplicity of each branch. Our Algorithm 2 computes the numbers N, Ny, ..., N,,_1 too, but
it also gives the ideal of each subset Sing, (C') C Sing(C') given by the points with multiplicity k. Eventually,
Algorithm 3 gives the (maybe approximated) coordinates of the points in P! which, via the parameterization
f of C, are the preimages of the singular points of C'. This allows one to compute the coordinates of the
singular points of C' by applying f to such points.

Although algorithms determining the structure of plane curves singularities do exist (see [CWL], [Pe],
[CKPU)), we think that our algorithms can be a useful tool, also used together with the existing ones,
since their approach to the problem is different, and their behavior on specific curves can be of different
effectiveness.

The paper is organized as follows: in the next section we give all the preliminary notions and define the
schemes X}, which will be our crucial tool to study Sing(C). In Section 3 we give the algorithms mentioned
above. Section 4 is dedicated to the study of curves with only double points. In this case we give a criterion
(Theorem 4.3) to describe, via the projection «|¢, : C,, — C, which kind of singularity a double point can
be. This result is interesting in itself, since usually this description via projection uses the osculating spaces
of C,, but that does not work when the multiplicity of the singular point is big with respect to n (e.g. see
[M, Remark 4.5.1]). Then we conjecture that the structure of X, allows one to recover all the information
about the structure of the singular points. Following our conjecture we give an algorithm (Algorithm 4)
which may find the structure of the double points; the algorithm will always work if the conjecture is true.
All along the paper we work over an algebraically closed field of characteristic zero, except in the last section
where we consider K = R, since in this case our Algorithm 3 can give a method to find acnodes and hidden
singularities.

2. PRELIMINARIES

Let K an algebraically closed field with char K =0. We study the singularities of a parameterized rational
plane curve C' C P? = P% given by a map £ = (fo : f1 : fa), where f; € K[s,t],, n > 3. We will always
suppose that our parameterization is proper, i.e. that f is generically 1:1 and the f;’s, 7 = 1,2, 3, do not have
common zeroes. Our approach will be to view C as the projection of a rational normal curve C,, C P" into
P2, so that the singularities of C' will be related to the position of the center of projection with respect to
secant (and tangent) lines and osculating spaces to C), (see e.g. [M]); in particular we will concentrate our
study mainly on the use of the secant variety o3(C,,).

Let us start with studying how the varieties o (C,) can be parameterized by a space P*, e.g. following
the construction in [ISV].

Let v, : P! — P™ be the Veronese n-uple embedding and let C,, = v, (]P’l) C P™ be the rational normal
curve in P”. Consider the space P(K|[s,t];) = P*, with 2 < k < n — 1; every point in this space corresponds
(modulo proportionality) to a polynomial of degree k, and its roots give k points (counted with multiplicity)
in P!, hence one of the k-secant (k — 1)-planes in the secant variety

ox(Cp) = U (P, Ps,...,P) C P
Py1,Ps,....PLeCy

Notice that only for k < [%] we have o4 (C,,) # P"; for higher values of k (i.e. for [2F] <k < n—1) the
secant variety o3 (C,,) fills up P"; nonetheless the points of P* still parameterize the (k — 1)-spaces k-secant
to C,,.

If we consider coordinates xg, ...,z in P" and coordinates zg, ..., z, in P" then the variety o (C},) can
be viewed in the following way: consider Y C P* x P™ defined by the equations

k
(1) inziﬂ»:o, j=0,...,n—k.
i=0
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We have that the (n — k4 1) X (n + 1) matrix of coefficients of (1) in the z;1;’s is:

X0 T “ee T 0 0 .o 0

0 X0 T cee Tk 0 o 0
(2) Ay =

0 “ .. 0 l‘o xl .« .. ... xk

While the (n — k + 1) x (k + 1) matrix of coefficients of (1) in the x;’s is the catalecticant matrix:

20 2k
Z DR z
(3) Be=| T
Zn—k Zn

Then if we consider the two projections p; : Y — P*¥ and py : Y — P", we get that p; gives a projective
bundle structure on P*, with fibers P*~1’s (this is known as the Schwartzenberger bundle associated to
01(Cn), see [Sc, ISV]). When k < 251, psy(Y) = 04(C,,) (the map ps is a desingularization of 4, (C,,)), while
when k& > ”T_l, 0,(Cr) =P™ and p, is surjective.

Notice that, for k < 251, for each point p € o4—;(Cp)\ok—1-:(Cy), with i = 0,1,...,k — 1, the fibers of
pe2 have dimension equal to ¢ (e.g. see [ISV]).

Moreover, for all P € P¥, we have that py(p;*(P)) is a (k — 1)-space k-secant to C,, C P", thus showing
that P* parameterizes the (k — 1)-secant k-spaces to C,, C P". Notice also that the maximal minors of By,
when k < %51, define the ideal of 0(C,) C P".

In particular, when we consider the points in P¥ that parameterize k-osculating (k — 1)-spaces to C,,
(their intersection with C,, has support at one point and it has degree k) they are the points of the rational
normal curve Cy, that parameterizes forms in K[s,]; which are k-powers of linear forms: (as + bt)F =

Zf:o (k)akfibisk’it"; so when

k .
,>aklb”, s kabtTh b,

(o :xy:...:ap) = (a¥ : ka®1b:...: (z

for a,b € P!, we get a rational normal curve C; C P*.
Notice that we choose to adopt the notation (xg : 1 : ... : xy), with colons, for the homogeneous
coordinates of a point in PV (other notations, with commas or square brackets, are also common).
Here we are viewing the rational normal curves C, C P¥ and C,, C P™ as the k-uple and n-uple Veronese
embeddings of P! in two different ways: the curve C,, is the image of the map v, : (s,t) — (s" : s" 1t :
: t"), while Cj, is the image of the map that sends the form as + bt to (as + bt)¥, hence (a,b) —

(ak S (’:) Pl U bk). For example, Cy is the dual curve of the usual rational normal conic Cy =

{2022 — 22 = 0}, and it has equation 4z¢xy — 2% = 0 (given by the discriminant of the form xgs? + 1 st +xot?,
parameterized by each point (z¢ : x1 : z2)).

We want to describe explicitly our curve C' C P? as a projection of C,, C P"; let us consider {fo, f1, f2) C
K|[s,t]n, with f, = ayos™ + 18"+ - aunt™, u = 0,1,2; when we associate our coordinates zp with
s"TPP, we can associate to (fo, f1, f2) an (n — 3)-dimensional subspace II C P", given by the equations
(4) fu(z) = awozo + ay1z1 + -+ aunzn =0, u=0,1,2.

Notice that ITN C,, = 0, since fy, f1, f2 have no common zeroes.
We can consider the projection map 7 : (P* — IT) — II+ =2 P? defined as:

Gpo Q1o A20

apy @11 G21
(5) m(zo: ... 2n) = (20 21--+ Zn)-

Qon  A1n  A2n
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where 1T+ 2 P2 I+ = (Fy, [y, Fy), and Fy, = (@yo : Gy : - - - © Gun). If we consider, in I+ 22 P2 homogeneous
coordinates wy, wy, wa, with (wg : wy : wa) = weFy + w1 Fy + waFy € P, we get that
(201 ... 2n) = (wo:wy:wy) with wy, = (20...2,) - Fy.
Then it is immediate to check that the projection 7(C,,) from IT on the plane IT* is exactly C, i.e. that
we have f(s,t) = (mow,)(s,t), V(s,t) € PL.
Now, if we consider the equations (4) in P¥ x P", we get a scheme II = p; 1(H) and the intersection scheme
Y’ =Y N1I, which is (2k — 4)—dimensional (since dimY = 2k — 1 and f is a proper parameterization); we
have that p;(Y') = P* for k > 4, while for k = 3, p;(Y’) = S3 C P3 is the Poncelet variety associated to

(fo, f1. f2) (e.g. see [ISV]).
We are going to consider the (n — k +4) x (n + 1) matrices:

Zo T . Tk 0 0 s 0
0 0 x1 - xk O . 0
(6) My=10 ... 0 20 x4 - -
apo Qo1 ap2 @p3z - Aop—1  QAon
aip aix a2 @3 - Qip—1  Qin
a2p az1 G2 @23 - A2p—1  A2n

For k = 3, det M3 defines a surface S3 of degree n — 2 in P?; let us point out that in our paper [BGI2] we
used the singularities of such surface in order to investigate the presence of triple points on C'; actually the
use of the 0-dimensional schemes X} we are going to define below is more efficient.

Definition 2.1. Let C C P? be a rational curve and (fy, f1, f2) be a proper parameterization. For 2 < k <
n — 1, let X3 C P* be the scheme defined by the (n — k + 3)-minors of Mj, .

Notice that for a generic rational curve C' C P? of degree n, the scheme X}, will be empty for k > 3.
We want to use the schemes X, in order to study the singularities of C'. The starting point for this
project is the following result:

Proposition 2.2. Let C C P? be a rational curve. The schemes X}, introduced in Definition 2.1 are either
0-dimensional or empty. Moreover:

o Vk,2<k<n-—1, Xy is non-empty iff there is at least a singular point on C of multiplicity > k.

o Fuvery singular point of C' yields at least a simple point of Xo and

-1
length Xo = (n 9 )

(notice that Xs is never empty since n > 3).

Proof. There is a singular point of multiplicity at least k& on C' if and only if there is at least a (k — 1)-space
H C P” that is k-secant to C,, and whose intersection with the center of projection II has dimension k — 2
(H N C, collapses to the singular point of C' under the projection from II). Notice that H need not to be
such that H N C,, is given by k distinct points: in that case the singular point of C' has k distinct branches.
All we are asking is that the divisor H N C), has degree k. The dimension of IIN H is k — 2 if and only if the
point Py € P* that parameterizes H is such that the matrix Mj, has rank n — k + 2 at Py. If k = 2 this
means that Py € Xo, while if £ > 3 not only Py € X}, but every (j — 1)-subspace H; C H which is j-secant
to C), will yield a point Py, € X (every different subscheme of length j of H N C,, will span such a H;).

When k > 3, H collapses to a point of C' if and only if Py € Xj. Since Sing(C) is a finite set, for all
k > 2, the scheme X, is 0-dimensional (or empty).

Since n > 3, C cannot be smooth, so Xy C P? is O-dimensional (and not empty) and its ideal Ix, has
height 2 in K[zg, 21, z2] and it is defined by the (n + 1) (maximal) minors of a (n + 1) x (n + 2) matrix of
forms. Hence, by [EN], a minimal free resolution of Ox, is given by the Egon-Northcott complex, as follows:

0— 0% (n+1) = O (—n+1)e 0% V(—n+2) 50— Ok, — 0,

where O = Op2 and the second map is defined by Ms. From here we can conclude since the length of X5 is
h%(Ox,), and, via twisting by O(n — 1) and taking cohomology, we get:
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h(Ox,) = h°(O(n — 1)) — 3h°(O) — (n — 1)RY(O(1)) + (n + 1)A°(0) =
= (n;—l) -3-3n—-1)+n+1= (n;l)

as required. 0

Recall that since C' has genus 0, the Clebsch formula gives

n—1 m
deg X5 = = 1
we= () = 2(%)
where ¢ varies over all singularities on, and infinitely near, C.
For all P € Sing(C'), we will indicate with
_ Myq
o3 (%)

q

where ¢ runs over all ¢’s infinitely near P (and ) gMq <M p). The invariant §p measures the contribution
of P to the Clebsch formula, and tells us that P is equivalent to dp nodes for the genus count of C.
More algebrically, the number dp can also be defined like this:

dp = length <@C,P/OC,P) ;
where Oc¢, p is the local ring of the structure sheaf O¢ at the point P, and @(;, p is its integral closure.

3. STUDY OF THE SET Sing(C).

Our approach to the problem of finding and analyzing the singularities of a rational plane curve C given
parametrically uses the projection from C,, C P" which gives C C P? (by exploiting the equations of its
center of projection IT C P™ that are given by the parameterization of C') and the parameterization (by P*)
of the k-secant (k — 1)-spaces of C,,.

3.1. Cuspidal curves. A first problem of particular interest that we will consider is how to determine
when the curve C' is cuspidal, i.e. when all its singular points are cusps (i.e. uniramified singular points).
This happens when the series of blowups which resolves the singularity yields, at any singular point P € C,
only one point over P. Cuspidal rational curves on C are of particular interest since topologically they are
spheres. Such curves have been widely studied (e.g. see [M, FZ, O, Pi]). The following proposition can be
of interest since it gives a criterion to decide whether a given rational curve is cuspidal or not. We can also
determine when we have only ordinary singularities, i.e. every singular point P € C with multiplicity m
comes via projection from m distinct points Q1, ..., Qn, of C), and the tangent lines Ty, (C),) are such that
(T, (Cn)) # m(Tq, (Cy)) for i # i"). This implies that there are no singularities infinitely near to P.

Proposition 3.1. Let C' C P2 be a rational curve, given by a proper parameterization (fo : f1 : fa), with
fi € K[s,t]n. Let Cy be the conic {4xozs — 23 = 0} and Xo C P? be the 0-dimensional scheme defined in
Definition 2.1. Then:

e C is cuspidal if and only if Supp(Xs) C Ca.

e C has only ordinary singularities if and only if the scheme X5 is reduced and X5 N Cqy = ().
Moreover, in the first case, the number of singular points of C' is exactly the cardinality of Supp(Xs).

Proof. The curve C is cuspidal if and only if no secant line to C), gets contracted in the projection to C, but
only tangent ones, i.e. if every point Q € TINao(C,,) lies on 7(C,,); this happens if and only if R = p1(p; 1(Q))
belongs to Cq, since the points of Cy parameterize tangent lines inside o5(C),). Moreover, each cuspidal point
of C' (regardless to its multiplicity) corresponds to a unique tangent to C,, which is contracted by =, hence
their number is given by Supp(Xs3) N Cs.

On the other hand, if C' has only ordinary singularities, then no tangent line to C,, gets contracted in the
projection to C, (hence Xo NCy = 0), so every singular point of multiplicity m of C' comes from m distinct
points of C,, (under the projection 7 : C;, — C), and (') secant lines of C,, get contracted by m, yielding
(") points of X (see Proposition 2.2).
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Now, since C' has only ordinary singularities, by Clebsch formula we have (";1) => PeSing(C) (™F), so,

since length(X>) = ('), and each P € Sing(C) yields (") (distinct) points in X, the scheme X, has to
be reduced.

If we know that X is reduced and X, NCy = 0, instead, we have that there are no cuspidal points and we
have that Supp(X2) contains at most ZPEsing(C) (mz”) points, so degXy = (";1) < ZPEsing(C) (mz”) But,
by Clebsch formula, (";') > > Pesing(C) (P, so deg X5 = (") = > Pesing(0) ("7). Thus any singular
mp

2
exactly to (";1); this implies that there cannot be any infinitely near singularities, so all the singularities

are ordinary ones. O

point P corresponds exactly to ( ) secant lines to ), which get contracted by m, and they all sum up

Remark 3.2. In order to use the previous proposition, one can use programs for symbolic computations,
as CoCoA [COCOA] or Macaulay [m2], like this: given a parameterized curve C' C P2, use fo, f1, f2 to write
the matrix My and compute the ideal Ix, defined by its maximal minors. Compute .J, the radical ideal of
Ix,. Compute the ideal J' := J + (4xowy — 2%). If J = J’ then Supp(C) C Ca, and C is cuspidal. If J' is
irrelevant and Ix, = J, then X5 NCy = 0 and X5 is reduced, so C has only ordinary singularities (the fact
that J' is irrelevant, i.e. associated to the empty set, can be checked via its Hilbert function).

Example 3.3. Consider the following quartic curve C' C P2:

x=st+ s

y = 32t2

2=t
Computing the ideal Iy, one finds that Ix, = (zoxe — 2122, 22, Toz1) and X, has length 3, while its radical
is Jx, = (z1, xo22), hence

Supp(X2) ={(0:0:1),(1:0:0)} CCy

and C' is cuspidal, with two cuspidal singular points (necessarily both of multiplicity 2).

Example 3.4. Consider the following quartic curve C' C P2

r = st + st

y = 82t2

z =t
Computing the ideal Ix,= (2%, xoz1, 23 + 2172), one finds that X5 has degree 3, while its radical is Jx, =
(z1,x0), hence Supp(Xs) = {(0:0: 1)} C Cy, hence C' is cuspidal, with one cuspidal singular point and one
can check that it is a point of multiplicity 2, since X3 is empty.

Example 3.5. Consider the following sextic C' C P?2:

r =455 — 165%t + 3512 + 285312 — 5%t — 6st°

y = 4s%t — 12512 — 41533 + 995%t* + 10st5 — 246

z = st — 3512 — 13533 + 275%t* + 36st°
Computing the ideal Ix,, one finds that Ix, is a radical ideal, with support on 10 points, and that Ix, +
(4rgwy — 27) is irrelevant, hence none of the 10 points comes from cuspidal points. By Proposition 3.1, the
curve C' has only ordinary singularities.

3.2. Number of singularities. Another problem of interest is to determine the number of singular points
of C. What we will give here are algorithms that allow one to compute this number (and also how many
singularities there are for each multiplicity). The algorithms depend also on the possibility to determine
equations for the varieties which parameterize binary forms with given factorization.

The main idea we will exploit is this: each singular point of C' of multiplicity k is associated to one point
in X}, that parameterizes a H = P*~!, k-secant to C,, which gets contracted by the projection 7. Notice that
also each subspace H =~ P/~ C H which is a j-secant to C), will be associated to a point in X, but it will
not be associated to a singular point of C. So, if j < k the points on X; can be associated to singularities of

multiplicity 7, or come from those H'’s that are associated to singularities of C' of multiplicity > j. Therefore
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in order to compute the number of singularities of C of order j, we will have to distinguish the two kinds of
points on Xj;.

Notation 1. For any integer k£ > 0, we will consider the partitions of k, and we will write a partition as an
element A\ = (\1,...,\x) € N¥  with
k
Ai=0, Y A=k and A=\ if i<
i=1
We will consider the variety Ry C P* where we view P* as the space parameterizing degree k binary
forms (i.e. P = P(K[s,t];)), and Ry parameterizes the projective classes of forms G' = Li‘l e Lz"', where
the L;’s are linear forms:

RT:HQGMKMWHG:H%~QhLEKMm}

We know that Ry is an irreducible variety since it can be given parametrically.

Remark 3.6. It is not too hard to find the equations of Ry: we can write the product (a1s+b1t)** -+ (ars+
bipt) * in the form E?:o a;js*=Iti, o, € Klay,by,...,ax, bg] and then proceed with the elimination of the
a;,b;’s from the ideal (zg — v, ..., 2, — ag) in the polynomial ring Klxo,...,zk,a1,b1,...,ax, bg]. This
yields the ideal I .

The set of partitions of k is partially ordered, and we will consider A < X if one can get X from X by
substituting some \;, with a partition of it.
For example, if we use subscripts for repeated indexes, we have (5,3,2,15,07) < (5,2,2, 19, 0g), since we can
get the second by substituting 3 with (2, 1) in the first one.

Remark 3.7. A variety Ry is contained in Ry, if and only if A=
Clearly R(k,o,...,0) = Cx is contained in every Ry; in particular, we have:

(7) Rik0p-1) = Ck C Rk-1.1.0,_2) € Rk—2.1.1.05_5) C - C Rez1,_0.0) C Ry = P~

Here Rr—j1,,00_ ;1) = O7(Cy), the variety of (j + 1)-osculating j-spaces to Cy, i.e. O7(Cy,) is the union:
Upec, O%(Cr) of the j-osculating spaces to Cj, (where O%(Cy) is the linear span of the subscheme (j+1)P C Cy
in P¥). In particular, O'(C) = 7(Cy), the tangent developable of Cy.

We will see that once we compute, for each X of Definition 2.1, the cardinality of Supp(Xy) N Ry, for
all partitions A of k, we can also get an algorithm to compute the number of singular points of C' of given
multiplicity.

Notation 2. Let Zy,...,Z,_1, Z; C P’, be the reduced schemes which are, respectively, the supports of
Xo,..., X1 introduced in Definition 2.1 and let Nj, for j = 2,...,n — 1 be the number of singularities of
order j of the curve C' C P2,

Notice that if k is the maximum value such that X # (), then
(8) Ny = 12
(this will be the main content of Step 1 in Algorithm 1). Moreover, if &’ < k, then in Zj, we will find all
the points associated to all the singularities of order j > k’. To be more precise, in Proposition 3.11 we will
show that if 7 is a partition of £ — 1, then not all the points of Z;_1 N RF are associated to singularities of

order k — 1 of C. This happens when @ can be obtained from a partition X of k, such that Z; N Ry # 0, by
subtracting 1 from some A; (cf. Definition 3.9).

Example 3.8. Consider the following quartic C' C P
r=s*+tt
y= st 4+ 522 4 4
z =5
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Here we have that the ideal of the 5-minors of M is Ix, = (m%,xOxQ, xoT1), hence Xy has length 3 with
support on 2 points, i.e. X5 is the union of a simple point and of a scheme of length 2 supported at one
point, so length(Z3) = 2. The ideal of the 4-minors of M3 is Ix, = (3, x2,20) hence X3 = Z3 is one simple
point. Trivially, since deg C' = 4, the scheme X, is empty.

Since k = 3 is the maximum value such that X # 0 and length(Z3) = 1 then N3 = 1 and therefore C' has
one triple point. Moreover we have that Zz NR9 1) # 0, i.e. Z3 has support on R(s 1.

Now, it is trivial that a plane rational quartic with a triple point does not have any double point, but
let us see this from the structure of X5. If we count how many double points C' has, we have first
to understand which are the Ry without trivial intersection with Zy. Now length(Zs N R(2,0)) = 1 and
length (Zg n (R(Ll) \R(Q’O))) = 1. Clearly both (1,1) and (2,0) are partitions of 2 that can be obtained
from (2, 1) by subtracting 1 to an entry: (1,1) = (2—1,1) and (2,0) = (2,1—1). Therefore neither Z>NR )
nor Zs NR(y,1) contribute to the singularities of order 2 of C'. Hence we have re-discovered that C' does not
have any double point.

Before giving the details of the algorithm we need the following definition.

Definition 3.9. We say that a partition A = (\y,..., \;) of k is an ancestor of a partition & = (01, ...,0,_1)
of k — 1, if the k-uple (o1, ...,0%-1,0) can be obtained from the k-uple (\1,...,\x) by subtracting 1 to an
entry A; > 0 and reordering the entries in decreasing order. Moreover we define ny — to be the number of

ways in which we can get A as an ancestor of 7.

Example 3.10. The partition A= (3,3,1,1,04) of 8 is an ancestor of the partition & = (3,2,1,1,03) of 7.
Moreover ny 5 = 2, in fact A can be seen as an ancestor of  in two different ways, by subtracting 1 to either
of the first two entries and dropping the last zero.

We are now ready to describe the algorithm.

Proposition 3.11. Let C C P? be a rational curve, given by a proper parameterization (fo : f1: f2), with
fi € K[s,t]n, and let X1, ..., X3, X5 be as in Definition 2.1. Then the following Algorithm 1, based on
the structure of the schemes X,_1,..., X3, Xo, computes the number N of singular points of C. Moreover,
Algorithm 1 computes also the number Ni of singular points of multiplicity k.

Proof. Let Zy be the support of X as in Notation 2. Before we give the steps for the algorithm, let us recall
how the points in Z;, C P* are related to those in Zj_; C PF—1 (for k > 3).

If Re Zy, k>3, R=(ap:...:a;) parameterizes a linear space Hr = P*~! Hp C P" which is k-secant
to C,, and which gets contracted by 7 to a singular point of C.

Actually, if Gr = ags® + ays¥ 1t + -+ apt* € K|s,t] and Gr = Li‘l o -Lgk is a linear factorization of
Gr, where X = (A\1,...,\;) is a partition of k, this defines a divisor Dg = M Q1 + - -+ + A\ Qy on C,,, whose
linear span in P™ is Hp.

For all i = 1,...,k such that A\; > 0, the divisor Dr; = MQ1 + -+ (A — 1)Q; + -+ - + A\ Qy defines
a (k — 1)-secant space H; = P*~2 which corresponds to a point R; € Z,_; via the binary form G; =
Li\l -~-LZ’-\”1 . -L;k. We can say that Dp; is defined by a partition @ = (o1, ...,05-1) of k — 1 such that

A= (A1,..., ) is an ancestor of & as in Definition 3.9.

Notation 3. For each k =3,...,n—1, let Z_, be the subset of Z;_; made of those points (as R; above),
which ¢ come from Zj, ” (i.e. which correspond to a H; C Hg, with R € Z).
For each R € Supp(Zy) defining a k-secant space

Hg = (05,1 (Cp), -+, 07 H(C)),
we have that, for each \; > 0, we can find points R; € Z,_1 such that
Hp, = (03, (C)o--- 06, 7V 7HC) - 037 (G-
Those are the points in Z;_;.

All this description shows that if a point R is in Z) | C Z_1 then R € Z;_1 N R7 for & minimal with

respect to the order defined above, and such that there exists an ancestor A of @ (partitions of k and of k — 1
respectively) and Z, N Ry # 0.
The points in Z;,_; must not be counted in determining the amount of the singularities of order k — 1.
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In the following algorithm we will count exactly all the singularities of a plane rational curve for each
multiplicity, and Step 3 will compute the exact contribution of each Z; to the singularities of multiplicity j
by excluding ZJ’-, coming from points in some Zj, k > j, and some ancestor partition as just described.

With these notations settled, one can now read Algorithm 1 below.

Algorithm 1 Number of Singularities

Input: : M; € COmkHDxm4D) 1y — o n—1 (see (6)).
Output: Number of singular points of C' of multiplicity k.

(1) Step 1.
1: fori=2,...,n—1do
2 Ix, = ((n — ¢+ 3)-minors of M;).
3: end for
4: let k be the biggest i s.t. Ix, is not irrelevant.
5 fori=2,...,k do
6:  compute the radical ideals Iz, := \/K
7: end for
8: Define Ny, := §Zi(cf. (8)).
(2) Step 2.

1: let Ry C P* be the variety introduced in Notation 1.

2: for any partition A of k do

33 Npyx:=1 ((Z;C NRx) — U(X’<X)RX’)7 the number of points in Zj corresponding
to binary forms of degree k whose linear factorization has exactly the A;’s as
exponents (we have to exclude all the Ry if X < X, see Remark 3.7).

4: end for
5: Define B
Ag := {\ partition of k| N, 5 > 0}.

(3) Step 3.

1: for any e A, do B

2:  set By := {7 partition of K — 1|\ is an ancestor of 7 }.

3: end for

4: for each partition & € By, do

5: Ni—1,7 analogously to Step 2.3.

6: end forﬁ

7: for all A € A;, and all & € By, such that Ny_1z > 0. do

8: Ny as in Definition 3.9

9: end for

10: 1et Nllc_l,g = Nkfl’g - ZXEAk- Nk5~nxf

11: define

Ni—1:= Z Ni-17,
Fe{partitions of k—1}
Then Nk_l = ﬂ(Zk_1 \ Z],c—l)~
(4) Step 4.
’ 1: repeat Steps 2 and 3 in order to get Ni_o,..., Na.

(5) Step 5.

1: Compute

N =N, + Np_1+---+ No.
This is the number of singular points of C. Moreover, each N is the number of
singular points of C' of multiplicity k.

]

Remark 3.12. For the algorithm we need to find (Z; N Ry), hence we need to compute Iz, + Ir. C
Klzo, ..., 2k
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For the computation of the ideal Iz, see Remark 3.6, while for Iz, we have the determinantal ideal of
X}, so we just compute its radical, e.g. via COCOA [COCOA] or Macaulay 2 [m2]. With the same programs
we can compute the sum of the two ideals.

For the reader who is familiar with numerical computations, notice that if one knows the coordinate of
Z, a way of testing if an element belongs to Ry is given, for a particular example, in [BDHM, §5.6] via
homotopy continuation with [Bertini].

Example 3.13 (This is Algorithm 1 on Example 3.5). Let C' C P? be the sextic curve already considered
in Example 3.5.

Step 1: We do not write Ix, here for brevity, anyway one can see that the scheme X3 has degree 3 and it is
reduced.
Step 1.4: The biggest k such that X} is not empty is k = 3.
Step 1.6: Iz, = \/Ix, = (o — 1562321 — 252z + 138623, x1235 + 9137w303 — 11429:8%,391:@ + 10667x% +
5210x9x3 + 793723, 23 — 1422423 — 139002275 — 341023) .
Step 1.8 Klxg.21,x2,23]/Iz, has Hilbert polynomial equal to 3, hence N3 = 3 and C' possesses three triple
points.
Step 2: The intersection of X3 with both C3 = R3,,0) and 7(C3) = Ry2,1,0) is empty (Step 2.1), hence we
have to keep track only of A = (1,1, 1) since N3 1,1,1) = 3.
Step 3.2: The only partition & of 2 which has as A = (1,1, 1) as ancestor, is & = (1,1), i.e. By ={(1,1)}
Step 3.5: Since R(1,1) = P2, in order to compute N (1,1) we have to understand how Z; intersects Rz o)-
One can easily compute that length(X;) = length(Z;) = 10 and that X3 N R2) = . Hence
N27(1,1) =10 -0 =10.
Step 3.8: We have that ny 1,1),(1,1) = 3.
Step 3.10: Né,(l,l) = N27(171) - N37(171,1) . n(1,171)7(1,1) =10-3-3= ].,
Step 3.11: Ny = 1. Hence 9 of the 10 simple points of X5 come from X3, and C has only one double point.
Step 4: There is no need to run this step in this example.
Step 5: N = 3+ 1 = 4: the curve C has 4 singular points: three ordinary triple points and an ordinary node
(the fact that the they are ordinary singularities is a consequence of Proposition 3.1, see Example
3.5).

Actually, Algorithm 1 says more about the singularities of C' than just their number and multiplicities.

Definition 3.14. Let P € Sing C; let Q1,...,Qs € C,, be the points such that 7|c, (Q;) = P, then we say
that C has s branches at P. Moreover let (n|c, )" (P) = A\ Q1 + - - - + A\.Q, as divisors in C,,, then we say
that the ¢-th branch of C' has multiplicity A; at P.

Corollary 3.15. Let Z; and Z) as in Notation 2 and 3 respectively. If R € Z;\ Zj and X = (A1, ..., \;) is
minimal (with respect to the order defined above) in order to have R € Ry, then the number of branches of
C at the singular point P € C associated to R (i.e. P =m(Hpg)) is the number I (X), the number of the X;’s

different from zero in the partition \. Moreover, fori =1,...,l()\), the i-th branch has multiplicity \; at P.

Proof. If Hp = <OZ\211_1(CH), ce Ogjj_l(C’n», then for each @); we have W(Oé‘i_l(Cn)) = P. Hence each Q;
gives a different branch of C at P, whose multiplicity is actually ;. ]
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Algorithm 1.1 Branch Structure
Input: M; € CP=k+x(n+) 1y — 2 n —1 (see (6)).
Output: Number of branches.

1: Repeat Algorithm 1, from Step 1 to Step 3.10 in order to get all N, 5 (of Al-
gorithm 1 Step 2.3) and N;_,  (of Algorithm 1 Step 3.5) for every partition
Nof kand @ of k — 1;

2: for j = (k—2),...,2do

Repeat Algorithm 1 from Steps 2 to 3.10 in order to get all N} _ for every
j=k—2,...,2 and any partition 7 = (01, ...,0,) of j;

4: end for

5: Set N};’X =Ny 5

6: Each N]’-_’E gives the number of points in Sing(C') having multiplicity j and
1(7) branches with multiplicity o;, i = 1,...,1(7), at each branch.

Example 3.16. Let C' be the quintic curve defined by:

x = 8%+ §3t2 — §23 410
y = 32 4 §243
z = s3t2 — %3

Computing the ideal Ix,, one finds that Iy, is a radical ideal, with support at the point R=(0:0:1:0:0).
Since deg(C') = 5, the point P € Sing(C'), of multiplicity 4, corresponding to R is the only singular point of
C. We have that R parameterizes the form s2#2, and Hp = P3 (see Notation 3) is a 4-secant space spanned
by the divisor (on C5), 2(1:0:0:0:0:0)+2(0:0:0:0:0:1). Moreover, R € Ry, with A = (2,2,0,0).
Since Nyx=1, and [ (X) = 2, we have that P € C has two branches, each of them of multiplicity 2 at P (at
P, the curve C appears as the union of two different cusps).

Notation 4. If C' is a plane rational curve of degree n, we set, for each k =2,...,n—1:

Sing;, (C) := {P € C' | P is singular of multiplicity k} C P2

There is another way to compute the number of singularities of C', another algorithm which gives directly
the ideals, in P2, of the (reduced) sets Sing(C) and Singx(C), k =2,...,n — 1.

Proposition 3.17. Let C, X,,_1,...,X3, X2 be as in Definition 2.1. Then Algorithm 2, based on the
structure of Xp,—1, ..., X3, X2 and on the projection 7w : C,, — C, computes the radical ideals of the reduced
sets Sing(C"), Sing,(C), ..., Sing,,_,(C) and also allows one to compute their cardinalities N, Na, ..., Np_1.

Proof. Let us sketch the steps of the algorithm. O
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Algorithm 2 Ideals of Singularities

Input: M; € Cv=F+0xn+D) 1y — 9 n —1 (see (6)).
Output 1: Ideal of Sing(C), hence also number N of singular points of C.
Output 2: Ideals of Sing, (C), hence also numbers Ny, of singular points of C' with multiplicity k = 2,...n — 1.

1: Compute the ideal Ix, C Kz, x1, 2] given by the maximal minors of Ms;

2: Compute the ideal I, := \/E which defines the scheme Zs C P27 the (reduced)
support of Xo;

3: Consider Iz, C K[xo,Z1,%2,20,...,2n);

4: Compute the ideal U C K][zo, 1,22, 20, - .., 2n] generated by the equations (1):
Zfzoxiziﬂ- :07 j = 0,...,n—k;

5: Compute the ideal I := Iz, + U C Klzo, 21,22, 20, ..., 2n], (this gives the fibers
Py (Z2) in Y);

6: Compute the saturation ideal I’ C Klzo, 21,22, 20,...,2n] of I with respect to
(ZC(), X1, «:CQ),
7: Compute the elimination ideal I, C K|zo,. .., z,] obtained by eliminating the vari-

ables wo,x1, 72 from the ideal I’ (notice that I is the ideal of the lines in P”
parameterized by Z>. These lines are exactly the secant and tangent lines to C,,
which get contrac