The mathematical properties of high-dimensional spaces seem remarkably suited for describing behaviors produces by brains. Brain-inspired hyperdimensional computing (HDC) explores the emulation of cognition by computing with hypervectors as an alternative to computing with numbers. Hypervectors are high-dimensional, holographic, and (pseudo)random with independent and identically distributed (i.i.d.) components. These features provide an opportunity for energy-efficient computing applied to cyberbiological and cybernetic systems. We describe the use of HDC in a smart prosthetic application, namely hand gesture recognition from a stream of Electromyography (EMG) signals. Our algorithm encodes a stream of analog EMG signals that are simultaneously generated from four channels to a single hypervector. The proposed encoding effectively captures spatial and temporal relations across and within the channels to represent a gesture. This HDC encoder achieves a high level of classification accuracy (97.8%) with only 1/3 the training data required by state-of-the-art SVM on the same task. HDC exhibits fast and accurate learning explicitly allowing online and continuous learning. We further enhance the encoder to adaptively mitigate the effect of gesture-timing uncertainties across different subjects endogenously; further, the encoder inherently maintains the same accuracy when there is up to 30% overlapping between two consecutive gestures in a classification window.
Rahimi, A., Benatti, S., Kanerva, P., Benini, L., Rabaey, J.M. (2016). Hyperdimensional biosignal processing: A case study for EMG-based hand gesture recognition. Institute of Electrical and Electronics Engineers Inc. [10.1109/ICRC.2016.7738683].
Hyperdimensional biosignal processing: A case study for EMG-based hand gesture recognition
BENATTI, SIMONE;BENINI, LUCA;
2016
Abstract
The mathematical properties of high-dimensional spaces seem remarkably suited for describing behaviors produces by brains. Brain-inspired hyperdimensional computing (HDC) explores the emulation of cognition by computing with hypervectors as an alternative to computing with numbers. Hypervectors are high-dimensional, holographic, and (pseudo)random with independent and identically distributed (i.i.d.) components. These features provide an opportunity for energy-efficient computing applied to cyberbiological and cybernetic systems. We describe the use of HDC in a smart prosthetic application, namely hand gesture recognition from a stream of Electromyography (EMG) signals. Our algorithm encodes a stream of analog EMG signals that are simultaneously generated from four channels to a single hypervector. The proposed encoding effectively captures spatial and temporal relations across and within the channels to represent a gesture. This HDC encoder achieves a high level of classification accuracy (97.8%) with only 1/3 the training data required by state-of-the-art SVM on the same task. HDC exhibits fast and accurate learning explicitly allowing online and continuous learning. We further enhance the encoder to adaptively mitigate the effect of gesture-timing uncertainties across different subjects endogenously; further, the encoder inherently maintains the same accuracy when there is up to 30% overlapping between two consecutive gestures in a classification window.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.