We give a new characterization of the peak subalgebra of the algebra of quasisymmetric functions and use this to construct a new basis for this subalgebra. As an application of these results we obtain a combinatorial formula for the Kazhdan–Lusztig polynomials which holds in complete generality and is simpler and more explicit than any existing one. We point out that, in a certain sense, this formula cannot be simplified.

Brenti, F., Caselli, F. (2017). Peak algebras, paths in the Bruhat graph and Kazhdan–Lusztig polynomials. ADVANCES IN MATHEMATICS, 304, 539-582 [10.1016/j.aim.2016.09.001].

Peak algebras, paths in the Bruhat graph and Kazhdan–Lusztig polynomials

CASELLI, FABRIZIO
2017

Abstract

We give a new characterization of the peak subalgebra of the algebra of quasisymmetric functions and use this to construct a new basis for this subalgebra. As an application of these results we obtain a combinatorial formula for the Kazhdan–Lusztig polynomials which holds in complete generality and is simpler and more explicit than any existing one. We point out that, in a certain sense, this formula cannot be simplified.
2017
Brenti, F., Caselli, F. (2017). Peak algebras, paths in the Bruhat graph and Kazhdan–Lusztig polynomials. ADVANCES IN MATHEMATICS, 304, 539-582 [10.1016/j.aim.2016.09.001].
Brenti, Francesco; Caselli, Fabrizio
File in questo prodotto:
File Dimensione Formato  
AM304-2017.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 548.87 kB
Formato Adobe PDF
548.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/587501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact