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Peak algebras, paths in the Bruhat graph

and Kazhdan-Lusztig polynomials*

Francesco Brenti and Fabrizio Caselli

Abstract

We give a new characterization of the peak subalgebra of the algebra of quasisymmetric
functions and use this to construct a new basis for this subalgebra. As an application of
these results we obtain a combinatorial formula for the Kazhdan-Lusztig polynomials
which holds in complete generality and is simpler and more explicit than any existing
one. We point out that, in a certain sense, this formula cannot be simplified.

1. Introduction

In their seminal paper [31] Kazhdan and Lusztig introduced a family of polynomials, indexed by
pairs of elements of a Coxeter groupW , that are now known as the Kazhdan-Lusztig polynomials
of W (see, e.g., [12] or [29]). These polynomials play a fundamental role in several areas of
mathematics, including representation theory, the geometry of Schubert varieties, the theory of
Verma modules, Macdonald polynomials, canonical bases, immanant inequalities, and the Hodge
theory of Soergel bimodules (see, e.g., [1, 5, 11, 17, 23, 24, 26, 27, 28, 32, 41], and the references
cited there). Given their importance, it is natural to try to compute these polynomials in full
generality (i.e., for all pairs of elements of all Coxeter groups) as explicitly as possible. Initially,
the only way to do this would be to use Kazhdan and Lusztig’s original existence proof ([31, §2.2],
see also [29, §§7.10-7.11] or [8, §5.1]), which involves a fairly complicated recursion on the Bruhat
order of W . Starting in 1994 the first author, and various collaborators, have given a series
of nonrecursive combinatorial formulas for the polynomials which hold in complete generality
([13, 14, 15, 16, 8]). Essentially, all these formulas express the Kazhdan-Lusztig polynomial of
two elements u, v ∈W as a sum, where each summand is a product of a number, which depends
on u, v andW , and a polynomial, which is independent of u, v andW , defined in terms of lattice
paths. A geometric interpretation of one of these formulas has been given (for geometric cases,
i.e., for Weyl groups) by Morel in [35].

Quasisymmetric functions were introduced by Gessel in [25] and are related to many top-
ics in algebra, combinatorics, and geometry including descent algebras, Macdonald polynomials,
Kazhdan-Lusztig polynomials, enumeration, convex polytopes, noncommutative symmetric func-
tions, Hecke algebras, and Schubert polynomials (see, e.g., [2, 3, 8, 9, 10, 18, 33, 34], and the
references cited there). An interesting class of quasisymmetric functions is the class of peak qua-
sisymmetric functions. These quasisymmetric functions were introduced independently by Billey
and Haiman in [10] and by Stembridge in [40]. The linear span of these peak quasisymmetric
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functions is an algebra, known as the algebra of peaks (or peak algebra), first defined and stud-
ied by Stembridge in [40]. This algebra was later found to be connected to several other topics
including the theory of convex polytopes (and, more generally, Eulerian posets [9]), Whitney
stratified manifolds ([21]), and Coxeter groups ([8]), often shedding new light on areas that had
been studied for many years. In the enumerative theory of convex polytopes a fundamental clas-
sical problem is that of characterizing the sequences of integers that are f -vectors of convex
polytopes (see, e.g., [42], or [7]). More generally, there is interest in the flag f -vector (which
counts flags of faces of prescribed dimensions). In 1985 Bayer and Billera characterized [3] all
the linear relations that hold for the flag f -vectors of all convex polytopes. In 1991 Bayer and
Klapper [4], elaborating on ideas of Fine, showed that any sequence of numbers satisfying the
above relations (now known as the Bayer-Billera relations) can be irredundantly encoded in a
polynomial in two noncommuting variables, and that, conversely, any such polynomial encodes
a sequence of numbers satisfying the Bayer-Billera relations. They called this polynomial, in
the case of polytopes, the cd-index of the polytope. Right from the start it was noted that the
cd-index seemed to possess remarkable nonnegativity properties. Indeed, Fine conjectured ([4,
Conj. 5]) and Stanley proved ([39, Cor. 2.2]) that the coefficients of the cd-index of any convex
polytope are nonnegative. This result was then generalized by Karu in [30], using ideas from
intersection cohomology, to all Cohen-Macaulay Eulerian posets, as conjectured by Stanley in
[39, Conj. 2.1] (it is interesting to note that the recent work of Elias-Williamson proving the
nonnegativity of the coefficients of Kazhdan-Lusztig polynomials [23] also uses ideas from inter-
section cohomology). In 2000 Bergeron, Mykytiuk, Sottile and van Willigenburg showed [6, Thm
5.4] that there is a close relationship between the peak algebra and the Bayer-Billera relations.
This easily implies ([9, Prop. 1.3] see also Theorem 2.1 below) that given any sequence of num-
bers satisfying the Bayer-Billera relations there is an associated element of the peak algebra, and
conversely. In fact, the sequence of numbers associated to a given element of the peak algebra
is just the sequence of coefficients obtained by expanding the element as a linear combination
of monomial quasisymmetric functions, while the coefficients of the corresponding noncommu-
tative polynomial are (up to a simple explicit factor) the coefficients obtained by expanding
the element as a linear combination of the elements of the basis defining the peak algebra ([9,
Thm. 2.1]). In [8] Billera and the first author associated a quasisymmetric function to any pair
of elements of any Coxeter group. Using results from [15] they showed that this quasisymmetric
function is always in the peak algebra. By expanding this quasisymmetric function as a linear
combination of the elements of the defining basis of the peak algebra they obtained an analogue
of the cd-index for any pair of elements of any Coxeter group (called the complete cd-index in
[8]) and showed that the Kazhdan-Lusztig polynomial of any pair of elements of any Coxeter
system can be expressed in a simple way in terms of the coefficients of the complete cd-index and
explicit combinatorially defined polynomials. The complete cd-index seems to possess remarkable
nonnegativity properties ([8, Conj. 6.1]) but this is at present unknown.

In this work we give a new characterization of the peak subalgebra of the algebra of quasisym-
metric functions and use this to construct a new basis for this subalgebra with certain properties.
As an application of these results we obtain a combinatorial formula for the Kazhdan-Lusztig
polynomials which holds in complete generality and is simpler and more explicit than any exist-
ing one. More precisely, this formula expresses the Kazhdan-Lusztig polynomial of two elements
u, v ∈W as a sum of at most fℓ(u,v) summands (fn being the n-th Fibonacci number), each one
of which is the product of a number, which depends on u and v, and a polynomial, independent
of u, v, and W , and we provide a combinatorial interpretation for both the number and the poly-
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nomial. This formula cannot be simplified by means of linear relations if it is to hold in complete
generality. We then investigate linear relations between the numbers involved in the formula and
show that there are no “homogeneous” relations even for lower intervals of a fixed rank. Our
proof uses some new total reflection orderings which may be of independent interest.

The organization of the paper is as follows. In the next section we collect some notation,
definitions, and results that are needed in the rest of this work. In §3 we give a new charac-
terization of the peak subalgebra of the algebra of quasisymmetric functions (Theorem 3.1). In
§4, using this characterization, we construct a basis of the peak subalgebra of the algebra of
quasisymmetric functions with certain properties (Theorem 4.3). In §5, using the results in the
previous ones, we obtain a combinatorial formula for the Kazhdan-Lusztig polynomials which
holds in complete generality (Theorem 5.1), is simpler and more explicit than any existing one,
and cannot be “linearly” simplified. Finally, in §6, we study linear relations between the numbers
involved in the formula.

2. Preliminaries

We let P
def
= {1, 2, 3, . . .} , N

def
= P ∪ {0}, Z be the ring of integers, Q be the field of rational

numbers, and R be the field of real numbers; for a ∈ N we let [a]
def
= {1, 2, . . . , a} (where [0]

def
= ∅).

Given n,m ∈ P, n 6 m, we let [n,m]
def
= [m] \ [n− 1], and we define similarly (n,m], (n,m), and

[n,m). For S ⊆ Q we write S = {a1, . . . , ar}< to mean that S = {a1, . . . , ar} and a1 < · · · < ar.
The cardinality of a set A will be denoted by |A|. Given a polynomial P (q), and i ∈ Z, we
denote by [qi](P (q)) the coefficient of qi in P (q). Given j ∈ Z we let χodd(j) = 1 if j is odd and
χodd(j) = 0 if j is even, and χeven(j) = 1 − χodd(j). We let fn be the n-th Fibonacci number

defined recursively by f0
def
= 0, f1

def
= 1 and fn

def
= fn−1 + fn−2 for n > 1.

Recall that a composition of n (n ∈ P) is a sequence (α1, . . . , αs) (for some s ∈ P) of positive
integers such that α1 + · · · + αs = n (see, e.g., [38, p. 17]). For n ∈ P we let Cn be the set

of all compositions of n and C
def
=

⋃
n>1Cn. Given β ∈ C we denote by l(β) the number of

parts of β, by βi, for i = 1, . . . , l(β), the i-th part of β (so that β = (β1, β2, . . . , βl(β))), and we

let |β|
def
=

∑l(β)
i=1 βi, and T (β)

def
= {βr, βr + βr−1, . . . , βr + · · · + β2} where r

def
= l(β) (note that

this definition is backwards from what would normally be expected, but agrees with [15] and
[12]). Given (α1, ..., αs), (β1, ..., βt) ∈ Cn we say that (α1, ..., αs) refines (β1, ..., βt) if there exist

0 < i1 < i2 < · · · < it−1 < s such that
∑ik

j=ik−1+1 αj = βk for k = 1, . . . , t (where i0
def
= 0 ,

it
def
= s). We then write (α1, ..., αs) � (β1, ..., βt). It is well known, and easy to see, that the map

α 7→ T (α) is an isomorphism from (Cn,�) to the Boolean algebra Bn−1 of subsets of [n − 1],
ordered by reverse inclusion.

We let 2
def
= {0, 1} and for n ∈ N we let 2n be the set of all 0-1 words of length n

2n = {E = (E1 · · ·En) : Ei ∈ 2},

ε ∈ 20 be the empty word, and 2∗ def
= ∪n>02

n. We consider on 2∗ the monoid structure given
by concatenation. We say that E ∈ 2∗ is sparse if either E = ε or E belongs to the submonoid

generated by 0 and 01 and we let 2∗
s be the monoid of sparse sequences. We also let 12∗ def

=

{1E : E ∈ 2∗} and 12∗ def
= 12∗ ∪ {ǫ}, and we similarly define 2∗1 and 2∗1. If E ∈ 2n we let

Ě
def
= (E1 · · ·En−1(1 − En)) if n > 1, and ε̌ = ε, E be the complementary string (so the i-th
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element of E is 1 if and only if the i-th element of E is 0, for i ∈ [n]), and Eop be the opposite
string of E (so the i-th element of Eop is 1 if and only if the (n+1− i)-th element of E is 1, for

i ∈ [n]). For notational convenience, for 1 6 i 6 j we also let Ei,j
def
= 0i−110j−i. Finally, we let

S(E)
def
= {i ∈ [n] : Ei = 1}, mi(E)

def
= |{j ∈ [n] : Ej = i}|, for i ∈ 2, and ℓ(E)

def
= n. We consider

on 2n the natural partial order 6 defined by E′ 6 E if and only if S(E′) ⊆ S(E). If E,E′ ∈ 2n

we let E ∨E′ be the only element of 2n such that S(E ∨ E′) = S(E) ∪ S(E′).

A formal power series F ∈ Q[[x1, x2, . . .]] is a quasisymmetric function if it is of bounded
degree and for all α1, α2, . . . ∈ N, the coefficient of xα1

1 xα2
2 · · · in F equals the coefficient of

xα1

σ(1) x
α2

σ(2) · · · in F for all σ : P→ P which are strictly increasing. Clearly, a symmetric function
is quasisymmetric, but not conversely. The set Q of quasisymmetric functions is a Q-algebra,
graded by the usual degree. We denote byQi the i

th homogeneous part ofQ, soQ = Q0⊕Q1⊕· · · .

There are (at least) two important bases of Qn both indexed by Cn. For α = (α1, α2, . . . , αr) ∈
Cn let

Mα
def
=

∑

16i1<···<ir

xα1
i1
. . . xαr

ir

and

Lα
def
=

∑

{β∈Cn: β�α}

Mβ.

These are called the monomial and fundamental bases (respectively) of Qn.

If E ∈ 2n−1 and S(E) = {s1, . . . , st}< we let oc(E) = (n−st, st−st−1, · · · , s2−s1, s1); oc(E)
is a composition of n and we denote by ME the monomial quasisymmetric function Moc(E), and
by LE the fundamental quasisymmetric function Loc(E). So, for example, Mε = Lε =

∑
i>1 xi,

M001010 =
∑

16i1<i2<i3
x2i1x

2
i2
x3i3 and, for E ∈ 2n−1, LE =

∑
E′>E ME′ . We emphasize that what

we denote LE is denoted by Loc(E) in [37, §7.19]. Note that the degree of ME and LE is ℓ(E)+1.

An element E = (E1 · · ·En) ∈ 2n is said to be peak if E = ε or if E1 = En = 0 and
Ei = 1 implies Ei−1 = Ei+1 = 0 for all i = 2, . . . , n − 1. So, for n > 1, E is peak if and only if
(E1 · · ·En−1) is sparse and En = 0. Given such a peak string E ∈ 2n we let

KE
def
=

∑

{A∈2n−1:E6A0∨ 0A}

2m1(A)+1MA,

andKε
def
= 1. The peak algebra Π ofQ is defined to be the subspace spanned by the quasisymmetric

functions KE as E ranges over all peak strings, for all n > 0. It is known ([40, Thm. 3.1]) that
Π is indeed an algebra.

The following result is known (see [9, Prop. 1.3] and also [6, Thm. 5.4]), and can also be taken
as a definition of Π.

Theorem 2.1. Let F = c+
∑

E∈2∗ cE ME ∈ Q. Then the following are equivalent:

i) F ∈ Π;

ii) for all A ∈ 2∗1, B ∈ 12∗, and j > 1

j∑

i=1

(−1)i−1 cAEi,jB = 2χodd(j)cA 0jB. (1)

The relations in part ii) of the above result are known as the Bayer-Billera (or generalized

Dehn-Sommerville) relations (see, e.g., [3]).
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Let Vn be the Q-vector space of functions on 2n taking values in Q. In particular, dimQ(Vn) =

2n. If α ∈ Vn and E ∈ 2n we let αE
def
= α(E).

Let P be an Eulerian partially ordered set of rank n + 1 with minimum 0̂ and maximum 1̂;
we always assume that a chain C = (x1, . . . , xk) in P does not contain 0̂ and 1̂. Given such a
chain we define E(C) ∈ 2n by

E(C)i = 1⇔ ∃j ∈ [k] : ρ(xj) = i,

where ρ is the rank function of P . The flag f-vector of P is the element f(P ) ∈ Vn given by

f(P )E
def
= |{chains C in P : E(C) = E}|

for all E ∈ 2n.

Let An be the subspace of Vn generated by the flag f-vectors f(P ) of all Eulerian posets of
rank n+ 1. The following result is then well known (see [3]).

Theorem 2.2. The vector space An has dimension fn+1 and is determined by the following
linear relations: given α ∈ Vn we have α ∈ An if and only if for all A ∈ 2∗1, B ∈ 12∗ and j > 1
such that A0jB ∈ 2n, we have

j∑

i=1

(−1)i−1αAEi,j B = 2χodd(j)αA 0j B .

Note that these relations are exactly the relations that appear in the characterization of the
peak algebra in Theorem 2.1.

If P is a graded poset of rank n+1, the function h(P ) ∈ Vn which is uniquely determined by

f(P )E =
∑

E′6E

h(P )E′ ,

is called the flag h-vector of P . The definition is clearly equivalent to

h(P )E =
∑

E′6E

(−1)m1(E)−m1(E′)f(P )E′

by the Principle of Inclusion-Exclusion.

We follow [12] for general Coxeter groups notation and terminology. In particular, given a
Coxeter system (W,S) and u ∈W we denote by ℓ(u) the length of u in W , with respect to S, by

e the identity of W , and we let T
def
= {usu−1 : u ∈W, s ∈ S} be the set of reflections of W . We

always assume that W is partially ordered by Bruhat order. Recall (see, e.g., [12, §2.1]) that this
means that x 6 y if and only if there exist r ∈ N and t1, . . . , tr ∈ T such that tr · · · t1 x = y and

ℓ(ti · · · t1 x) > ℓ(ti−1 · · · t1x) for i = 1, . . . , r. Given u, v ∈W we let [u, v]
def
= {x ∈W : u 6 x 6 v}.

We consider [u, v] as a poset with the partial ordering induced by W . It is well known (see, e.g.,
[12, Cor. 2.7.11]) that intervals of W are Eulerian posets. Recall (see, e.g., [12, §2.1]) that the
Bruhat graph of a Coxeter system (W,S) is the directed graph B(W,S) obtained by taking W
as vertex set and putting a directed edge from x to tx for all x ∈ W and t ∈ T such that
ℓ(x) < ℓ(tx).

We denote by H(W ) the Hecke algebra associated to W . Recall (see, e.g., [29, Chap. 7]) that
this is the free Z[q, q−1]-module having the set {Tw : w ∈W} as a basis and multiplication such
that

TwTs =

{
Tws, if ℓ(ws) > ℓ(w),
qTws + (q − 1)Tw, if ℓ(ws) < ℓ(w),

(2)
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for all w ∈ W and s ∈ S. It is well known that this is an associative algebra having Te as unity
and that each basis element is invertible in H(W ). More precisely, we have the following result
(see [29, Prop. 7.4]).

Proposition 2.3. Let v ∈W . Then

(Tv−1)−1 = q−ℓ(v)
∑

u6v

(−1)ℓ(v)−ℓ(u) Ru,v(q)Tu ,

where Ru,v(q) ∈ Z[q].

The polynomials Ru,v(q) defined by the previous proposition are called the R-polynomials of
W . It is easy to see that deg(Ru,v(q)) = ℓ(v) − ℓ(u), and that Ru,u(q) = 1, for all u, v ∈ W ,

u 6 v. It is customary to let Ru,v(q)
def
= 0 if u 66 v.

The R-polynomials can be used to define the Kazhdan-Lusztig polynomials. The following
result is not hard to prove and a proof can be found, e.g., in [29, §§7.9-11], or [31, §2.2].

Theorem 2.4. There is a unique family of polynomials {Pu,v(q)}u,v∈W ⊆ Z[q], such that, for all
u, v ∈W :

i) Pu,v(q) = 0 if u 66 v;

ii) Pu,u(q) = 1;

iii) deg(Pu,v(q)) <
1
2 (ℓ(v) − ℓ(u)), if u < v;

iv)

qℓ(v)−ℓ(u) Pu,v

(
1

q

)
=

∑

z∈[u,v]

Ru,z(q)Pz,v(q) , (3)

if u 6 v.

The polynomials Pu,v(q) defined by the preceding theorem are called the Kazhdan-Lusztig

polynomials of W .

We denote by Φ+ the set of positive roots of (W,S) (see, e.g., [12, §4.4]). Recall (see, e.g., [12,
§5.2]) that a total ordering ≺ on Φ+ is a reflection ordering if whenever α, β, c1α+ c2β ∈ Φ+ for
some c1, c2 ∈ R>0 and α ≺ β then α ≺ c1α+ c2β ≺ β. The existence of reflection orderings (and
many of their properties) is proved in [20, §2] (see also [12, §5.2]). By means of the canonical
bijection between Φ+ and T (see, e.g., [12, §4.4]) we transfer the reflection ordering also on T .

Let ≺ be a reflection ordering of T . Given a path ∆ = (a0, a1, . . . , ar) in B(W,S) from a0

to ar, we define its length to be l(∆)
def
= r, and its descent string with respect to ≺ to be the

sequence E≺(∆) ∈ 2r−1 given by

E≺(∆)r−i = 1⇔ ai(ai−1)
−1 ≻ ai+1(ai)

−1.

Given u, v ∈ W , and k ∈ N, we denote by Bk(u, v) the set of all the directed paths in B(W,S)

from u to v of length k, and we let B(u, v)
def
=

⋃
k>0Bk(u, v). For u, v ∈ W , and E ∈ 2n−1, we

let, following [14],

c(u, v)E
def
= |{∆ ∈ Bn(u, v) : E≺(∆) 6 E}|, (4)

and

b(u, v)E
def
= |{∆ ∈ Bn(u, v) : E≺(∆) = E}|. (5)

6
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Note that these definitions imply that

c(u, v)E =
∑

{E′∈2n−1:E′6E}

b(u, v)E′ (6)

for all u, v ∈W and E ∈ 2n−1. It follows immediately from Proposition 4.4 of [14] that c(u, v)E
(and hence b(u, v)E) are independent of the reflection ordering ≺ used to define them.

Let [u, v] be a Bruhat interval of rank r + 1 in a Coxeter group, and ∆ = (x0, x1, . . . , xn+1)
a path in the Bruhat graph from u to v. So x0 = u, xn+1 = v, and for all i ∈ [n + 1] we have
xi−1 < xi and the element ti given by xi = xi−1ti is a reflection. We then sometimes denote such
a path by

∆ = (x0
t1−→ x1

t2−→ · · ·
tn+1
−→ xn+1).

If ∆ ∈ Bn+1(u, v), ≺ is a reflection ordering and E = E≺(∆) we let m≺(∆)
def
= µEn · · · µE1 ∈

Z〈a, b〉, where µ0 = a and µ1 = b. In other words, if ∆ = (x0
t1−→ x1

t2−→ · · ·
tn+1
−→ xn+1), then

m≺(∆) is the product of n factors, the i-th factor being a if ti ≺ ti+1 and b otherwise. We will
usually drop the subscript ≺ from the notation m≺(∆) when it is clear from the context.

If [u, v] is a Bruhat interval of rank r + 1 the cd-index of [u, v] is the polynomial

Ψ[u,v]
def
=

∑

E∈2r

h([u, v])E µE ,

where h([u, v]) is the flag h-vector of [u, v] and µE
def
= µE1 · · ·µEr . It is known that Ψ[u,v] is a

polynomial in c = a + b and d = ab + ba, as [u, v] is a Eulerian poset. It is also known that if
[u, v] has rank r+1 then there exists a unique path ∆ ∈ Br+1(u, v) such that E≺(∆) = 0r ∈ 2r.
This implies (see [38, Thm. 3.13.2]) that for all E ∈ 2r we have that b([u, v])Eop = h([u, v])E .
Therefore the cd-index of a Bruhat interval [u, v] of length r + 1 can be expressed as

Ψ[u,v] =
∑

∆∈Br+1(u,v)

m≺(∆),

where ≺ is any reflection ordering. We consider the natural extension of this polynomial to all
paths in the Bruhat graph

Ψ̃[u,v](a, b)
def
=

∑

∆∈B(u,v)

m≺(∆).

The polynomial Ψ̃[u,v] has been introduced by Billera and the first author in [8] and can also be
expressed as a polynomial in the variables c = a+ b and d = ab+ ba and therefore it is called the
complete cd-index of the interval [u, v]. We will use the simpler notation Ψ̃u,v instead of Ψ̃[u,v] to
denote the complete cd-index of the Bruhat interval [u, v].

Let A = Z〈a, b〉. Following [22], we define a coproduct δ : A → A ⊗ A on A as the unique
linear map such that for all n ∈ N and all v1, . . . , vn ∈ {a, b},

δ(v1 · · · vn) =
n∑

i=1

v1 · · · vi−1 ⊗ vi+1 · · · vn.

One can observe that the algebra A endowed with the coproduct δ has also a Newtonian coalgebra
structure, though this is not needed in the sequel.

Now let P be the k-vector space consisting of formal finite linear combinations of Bruhat

7
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intervals. We define also on P a coproduct δ : P → P ⊗ P in the following way. We let

δ([u, v]) =
∑

x∈(u,v)

[u, x]⊗ [x, v].

The following result is proved in [8, Prop. 2.11]

Proposition 2.5. The complete cd-index Ψ̃ : P → A is a coalgebra map, i.e.
∑

x∈(u,v)

Ψ̃u,x ⊗ Ψ̃x,v = δ(Ψ̃u,v).

For all x ∈ A write δ(x) =
∑

i xi(1) ⊗ xi(2) where xi(1), xi(2) ∈ A. Then for any y ∈ A we
can consider the following map

Dy(x) =
∑

i

xi(1) · y · xi(2).

One can easily verify that this is a well-defined linear map, and that it is a derivation, i.e.
it satisfies the Leibniz rule on products, for all y ∈ A. The following is then an immediate
consequence of Proposition 2.5.

Corollary 2.6. Let [u, v] be any Bruhat interval. Then

Dy(Ψ̃u,v) =
∑

x∈(u,v)

Ψ̃u,x · y · Ψ̃x,v.

Given u, v ∈W , u 6 v, we let, following [8],

F̃ (u, v)
def
=

∑

E∈2∗

b(u, v)ELE,

if u < v and F̃ (u, u)
def
= 1. This definition is different from the one given in [8] but equivalent to

it by Theorem 2.2 of [8]. The following is proved in [8, Theorem 2.2] (see also [15, Theorem 8.4]).

Theorem 2.7. Let (W,S) be a Coxeter system and u, v ∈W , u < v. Then F̃ (u, v) ∈ Π.

Let n ∈ N. A lattice path of length n is a function Γ : [0, n] → Z such that Γ(0) = 0 and
|Γ(i)−Γ(i−1)| = 1 for all i ∈ [n] and we denote by L(n) the set of all the lattice paths of length
n. Given Γ ∈ L(n) we let N(Γ) ∈ 2n−1 be given by

N(Γ)i = 1⇐⇒ Γ(i) < 0,

and d+(Γ)
def
= |{i ∈ [n] : Γ(i)− Γ(i− 1) = 1}|. Note that

d+(Γ) =
Γ(n) + n

2
. (7)

For E ∈ 2n−1 we define, following [12, §5.4], a polynomial ΥE(q) ∈ Z[q] by

ΥE(q) = (−1)m0(E)
∑

Γ∈L(E)

(−q)d+(Γ), (8)

where L(E)
def
= {Γ ∈ L(n) : N(Γ) = E}. Note that what we denote ΥE is denoted by Υoc(E) in

[12, §5.4]. For example, Υ001010(q) = q4 − q3.

Following [8] we define a linear map K : QSym → Z[q1/2, q−1/2] by K(LE)
def
= q−

ℓ(E)+1
2 ΥE,

for all E ∈ 2∗. We then have the following result (see [8, Prop. 3.1], and [12, Thm. 5.5.7]).

8
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Theorem 2.8. Let u, v ∈W , u < v. Then

K(F̃ (u, v)) = q
−ℓ(u,v)

2 Pu,v(q)− q
ℓ(u,v)

2 Pu,v

(
1

q

)
. (9)

Given E ∈ 2∗ we let the exponent composition of E be the unique composition α = (α1, α2, . . .)
such that

E =





1 . . . 1︸ ︷︷ ︸
α1

0 . . . 0︸ ︷︷ ︸
α2

1 . . . 1︸ ︷︷ ︸
α3

. . . , if E1 = 1,

0 . . . 0︸ ︷︷ ︸
α1

1 . . . 1︸ ︷︷ ︸
α2

0 . . . 0︸ ︷︷ ︸
α3

. . . , if E1 = 0.

So, for example, the exponent composition of 00110 is (2, 2, 1). The following is a restatement of
Corollary 6.7 of [15]. Note that ΥE 6= 0 if the exponent composition of E has only one part.

Corollary 2.9. Let E ∈ 2∗ be such that ℓ(α) > 2, where α is the exponent composition of E.
Then ΥE 6= 0 if and only if α2 ≡ α3 ≡ · · · ≡ αℓ(α)−1 ≡ 1 (mod 2) and α1 ≡ E1 (mod 2). ✷

3. A characterization of the peak algebra

Our purpose in this section is to give a new characterization of the peak subalgebra of the
algebra of quasisymmetric functions. More precisely, we give necessary and sufficient conditions
on the coefficients of a quasisymmetric function F , when expressed as a linear combination of
fundamental quasisymmetric functions, for F to be in the peak subalgebra. Our result is the
following.

Theorem 3.1. Let F =
∑

E∈2∗ βE LE ∈ Q. Then the following are equivalent:

i) F ∈ Π;

ii) for all A,B ∈ 2∗

βAB + βǍB = βAB̄ + βǍB̄ .

The rest of this section is devoted to the proof of “ii) implies i)”, while the proof of “i) implies
ii)” will be given as a consequence of the main result in §4.

Let Bn be the vector subspace of Vn generated by the flag h-vectors of all Eulerian posets
of rank n+ 1. Then Bn has clearly dimension fn+1 by Theorem 2.2, and Theorem 3.1 is clearly
equivalent to the following one.

Theorem 3.2. Let α, β ∈ Vn be such that αE =
∑

E′6E βE′ for all E ∈ 2n. Then the following
are equivalent

– α satisfies Bayer-Billera relations (i.e. α ∈ An);

– for all A,B ∈ 2∗ such that AB ∈ 2n

βAB + βǍB = βAB̄ + βǍB̄ . (10)

We refer to the relations appearing in (10) as the dual Bayer Billera-relations. Note that the
relations βE = βĒ appear as a special case of (10) by letting A = ε.

Let B′
n be the subspace of Vn defined by the relations (10). Theorem 3.2 can therefore be

simply stated by saying that Bn = B′
n for all n ∈ N.

We begin our study with a technical result.

9
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Lemma 3.3. If β ∈B′
n then for all A,B ∈ 2∗ and j > 0 such that A1jB ∈ 2n we have

βA1jB =

j−1∑

i=1

(−1)i−1βAEi,jB̄
+ (−1)j−1βAEj,jB + χeven(j)βA0j B̄ .

Proof. We proceed by induction on j. If j = 1 the relation is a trivial identity and so we assume
j > 2. We then have, using Eq. (10) and our induction hypothesis, that

βA1jB = βA10j−1B̄ + βA0jB̄ − βA01j−1B

= βAE1,jB̄ + βA0jB̄ −

j−2∑

i=1

(−1)i−1βA0Ei,j−1B̄ + (−1)j−1βA0Ej−1,j−1B

− χeven(j − 1)βA0j B̄

=

j−1∑

i=1

(−1)i−1βAEi,jB̄
+ (−1)j−1βAEj,jB + χeven(j)βA0j B̄ .

Lemma 3.4. If β ∈B′
n then for all A ∈ 2∗ and B ∈ 12∗ such that AB ∈ 2n, we have

∑

B′6B

βAB′ =
∑

B′6B

βAB′ .

Proof. If B = ε the result is trivial, so we can assume B = 1C for some C ∈ 2∗. Then
∑

B′6B

βAB′ =
∑

C′6C

(βA0C′ + βA1C′)

while ∑

B′6B

βAB′ =
∑

C′6C

(βA0C′ + βA1C′) =
∑

C′6C

(βA1C′ + βA0C′),

and the result follows from (10).

Using the relations βE = βĒ , one can obtain in an analogous way the following symmetric
version of Lemma 3.4: for all β ∈ B′

n, A ∈ 2∗1 and B ∈ 2∗ such that AB ∈ 2n we have
∑

A′6A

βA′B =
∑

A′6A

βA′B.

The next result completes the proof that B′
n ⊆ Bn.

Proposition 3.5. Let β ∈B′
n and α ∈ Vn be given by

αE =
∑

E′6E

βE′

for all E ∈ 2n. Then α ∈ An.

Proof. Let j > 1, A ∈ 2∗1, B ∈ 12∗ be such that A0jB ∈ 2n. We have to show that

2χodd(j)αA0jB =

j∑

i=1

(−1)i−1αAEi,jB. (11)

10



Peak algebras and Kazhdan-Lusztig polynomials

By the definition of α, Eq. (11) is equivalent to

2χodd(j)
∑

A′6A,B′6B

βA′0jB′ =
∑

A′6A,B′6B

j∑

i=1

(−1)i−1(βA′Ei,jB′ + βA′0jB′).

Now we observe that clearly
∑j

i=1(−1)
i−1βA′0jB′ = χodd(j)βA′0jB′ and therefore the preceding

equation simplifies to

χodd(j)
∑

A′6A,B′6B

βA′0jB′ =
∑

A′6A,B′6B

j∑

i=1

(−1)i−1βA′Ei,jB′ .

By Lemma 3.3 this reduces to

χodd(j)
∑

A′6A,B′6B

βA′0jB′ =

∑

A′6A,B′6B

(
βA′1jB′ + (−1)j−1βA′Ej,jB′ + (−1)jβA′Ej,jB′ − χeven(j)βA′0jB′

)

and using the relations βA′1jB′ = βA′0jB′ and βA′Ej,jB′ + βA′0jB′ = βA′Ej,jB′ + βA′0jB′ together

with the simple observation (−1)j − χeven(j) = −χodd(j), to conclude the proof we only have to
verify that

2χodd(j)
∑

A′6A,B′6B

βA′0jB′ =
∑

A′6A,B′6B

(βA′0jB′ + (−1)j−1βA′0jB′);

but this is an immediate consequence of Lemma 3.4 and of its symmetric version.

4. A basis for the peak algebra

In this section we define a family of quasisymmetric functions and show, using the results in the
previous one, that the ones that are nonzero are a basis for the peak subalgebra of the algebra
of quasisymmetric functions. We also show how to expand any peak quasisymmetric function as
a linear combination of elements of this basis. As a consequence of this fact, this basis can also
be characterized as the image of the fundamental quasisymmetric functions indexed by sparse
sequences under the unique projection of Q on Π whose kernel is spanned by the fundamental
quasisymmetric functions indexed by non sparse sequences. These results are used in the next
section in the proof of our main result.

For E ∈ 2n−1 let

∂(E)
def
= {i ∈ [n− 2] : Ei 6= Ei+1} ∪ {n− 1}.

Note that ∂(E) = {x1, . . . , xr}< if and only if the exponent composition of E is (x1, x2−x1, x3−

x2, . . . , xr − xr−1). Let T ∈ 2n−1, S(T ) = {s1, . . . , st}<, s0
def
= 0, st+1

def
= n, and

Ij
def
= (sj , sj+1) = {sj + 1, sj + 2, . . . , sj+1 − 1},

for all j ∈ [0, t]. We let G(T ) be the set of all E = 2n−1 such that

i) ∂(E) ∩ Ij 6= ∅ for all j ∈ [0, t− 1];

ii) if x, y ∈ ∂(E) ∩ Ij then x ≡ y (mod 2) for all j ∈ [0, t];

Given such an E we define

sgn(E,T )
def
= (−1)

∑t
j=1(sj−xj−1),

11
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where xj is any element of ∂(E) ∩ Ij−1 for j ∈ [t], and we let

DT
def
=

∑

E∈G(T )

sgn(E,T )LE ∈ Q.

So, for example, if T = 00100 then G(T ) = {01111, 01100, 00111, 00100, 10000, 10011, 11000,
11011} and DT = −L01111 − L01100 + L00100 − L10000 − L10011 + L00111 + L11000 + L11011. Note
that DT is homogeneous of degree ℓ(T ) + 1 and that G(T ) = ∅, and hence DT = 0, if T is not
sparse. Given E,T ∈ 2n−1 we let

hE,T
def
= [LE ](DT ),

so, by our definitions,

hE, T =

{
sgn(E,T ), if E ∈ G(T ),
0, otherwise.

(12)

Note that, since hE,T depends only on ∂(E) \ T , given S ⊆ [n− 1] we will sometimes write hS,T
rather than hE,T if ∂(E) = S.

The next property is crucial in the proof of the main result of this section.

Proposition 4.1. Let E,T ∈ 2n−1, and i ∈ [2, n− 2] be such that i− 1, i 6∈ ∂(E). Then

h∂(E), T + h∂(E)∪{i−1,i}, T = h∂(E)∪{i}, T + h∂(E)∪{i−1}, T . (13)

Proof. We may clearly assume that T is sparse. If i ∈ T then ∂(E) \ T = (∂(E) ∪ {i}) \ T and
(∂(E)∪{i− 1}) \T = (∂(E)∪{i− 1, i}) \T so (13) clearly holds. Similarly if i− 1 ∈ T . We may
therefore assume that i, i− 1 /∈ T .

Suppose first that E ∈ G(T ). Then ∂(E)∪{i−1, i} /∈ G(T ) while exactly one of ∂(E)∪{i−1},
∂(E) ∪ {i} is in G(T ), and it is easy to see that it has the same sign as E, so (13) holds.

Suppose now that E /∈ G(T ). Then either there is j ∈ [0, t−1] such that ∂(E)∩Ij = ∅ or there
exists j ∈ [0, t] such that ∂(E)∩Ij = {x1, . . . , xp}< and there exists r ∈ [2, p] such that xr−xr−1 ≡
1 (mod 2). If either i < sj or sj+1 < i−1 then ∂(E)∪{i−1}, ∂(E)∪{i}, ∂(E)∪{i−1, i} /∈ G(T )
so (13) holds. So assume sj < i− 1 < i < sj+1.

Suppose first that ∂(E)∩Ij = ∅ for some j ∈ [0, t−1]. Then ∂(E)∪{i−1, i} /∈ G(T ) while either
both or none of ∂(E)∪{i−1}, ∂(E)∪{i} are in G(T ) and in the first case sgn(∂(E)∪{i−1}, T ) =
−sgn(∂(E) ∪ {i}, T ) so (13) holds.

Suppose now that ∂(E)∩ Ij = {x1, . . . , xp}< for some j ∈ [0, t] and there exists r ∈ [2, p] such
that xr − xr−1 ≡ 1 (mod 2). Then ∂(E) ∪ {i− 1, i}, ∂(E) ∪ {i− 1}, ∂(E) ∪ {i} /∈ G(T ) and (13)
holds.

We can now prove the first main result of this section, namely that the quasisymmetric
functions DT are in the peak subalgebra of the algebra of quasisymmetric functions.

Theorem 4.2. Let T ∈ 2n−1. Then DT ∈ Πn.

Proof. Note first that, since hE,T depends only on ∂(E) \ T , hE,T = hĒ,T for all E ∈ 2n−1. Now

let i ∈ [2, n− 2], A ∈ 2i−1, and B ∈ 2n−1−i. We claim that then

hA0B, T + hA1B, T = hA0B̄, T + hA1B̄, T . (14)

In fact, we may clearly assume that B1 = 0. Let {x1, . . . , xr}<
def
= ∂(A) and {y1, . . . , yk}<

def
= ∂(B)

(so xr = i− 1 and yk = n− 1− i). If Ai−1 = 0, then ∂(A0B) = {x1, . . . , xr−1, y1 + i, . . . , yk + i},

12
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∂(A1B) = {x1, . . . , xr, i, y1 + i, . . . , yk + i}, ∂(A0B̄) = {x1, . . . , xr−1, i, y1 + i, . . . , yk + i}, and
∂(A1B̄) = {x1, . . . , xr, y1+i, . . . yk+i} so (14) follows from Proposition 4.1. Similarly, if Ai−1 = 1
then we have that ∂(A1B̄) = {x1, . . . , xr−1, y1 + i, . . . , yk + i}, ∂(A0B̄) = ∂(A1B̄) ∪ {xr, i},
∂(A0B) = ∂(A1B̄)∪{xr}, and ∂(A1B) = ∂(A1B̄)∪{i} and (14) again follows from Proposition
4.1. This shows that the function β given by βE = hE,T belongs to Bn−1 by Proposition 3.5.
This implies the result, by Theorem 2.1 and the proven part of Theorem 3.2.

Let E ∈ 2n−1, {y1, . . . yk}<
def
= ∂(E). Note that E is sparse if and only if E1 = 0 and

y2i = y2i−1 + 1 (15)

for all 1 6 i 6
⌊
k
2

⌋
.

The following is the main result of this section.

Theorem 4.3. The linear map π : Q → Π given by π(1) = 1 and

π(LT ) =

{
DT , if T ∈ 2∗

s,

0, otherwise

is a projection on Π. In other words the set {DT : T ∈ 2∗
s} ∪ {1} is a basis of Π and if

F =
∑

E∈2∗ hELE ∈ Π, then F =
∑

T∈2∗

s
hTDT .

Proof. Let T ∈ 2n−1
s , T = {s1, . . . , st}<, s0

def
= 0, st+1

def
= n. We claim that

hE,T = δE,T . (16)

for all E ∈ 2n−1
s . Note first that ∂(T )∩ Ij = {sj+1− 1} for all j ∈ [0, t− 1], while |∂(T )∩ It| 6 1.

Hence T ∈ G(T ) and sgn(T, T ) = 1 so hT,T = 1.

Suppose now that E ∈ G(T ), E sparse, {y1, . . . , yk}<
def
= ∂(E). We claim that

∂(E) ∩ Ij−1 = {sj − 1},

and that

sj = y2j

for all j ∈ [t].

In fact, since, by (15), y2 − y1 = 1, this is clear if j = 1. Suppose that it is true for some
j ∈ [t− 1]. Then sj = y2j . Furthermore, |∂(E)∩ Ij | = 1 (for if |∂(E)∩ Ij | > 2 then y2j+1, y2j+2 ∈
∂(E) ∩ Ij which, by (15), contradicts the fact that E ∈ G(T )). Hence sj < y2j+1 < sj+1 6 y2j+2

which, by (15), implies that y2j+1 = sj+1 − 1 = y2j+2 − 1. If ∂(E) ∩ It = ∅ then st = n − 1,
so k = 2t and ∂(E) = {s1 − 1, s1, . . . , st − 1, st} so E = T . If ∂(E) ∩ It 6= ∅ then, since
st = y2t, y2t+1 ∈ ∂(T ) ∩ It. But, by (15), this implies that y2t+1 = n − 1. Hence k = 2t + 1
and ∂(E) = {s1 − 1, s1, . . . , st − 1, st, n − 1} which again implies that E = T . This shows that
G(T ) ∩ 2∗

s = {T} and hence proves (16). Therefore {DT : T ∈ 2n−1
s } is a linearly independent

set and this, since dim(Πn) = |2
n−1
s |, proves the result.

The flag f -vector f(P ) of a polytope P of rank n+1 is uniquely determined by the values it
takes on sparse sequences: this was already observed by Bayer and Billera in [3] as a consequence
of Theorem 2.2. Therefore one can express any entry of the flag f -vector as a linear combination
of the entries indexed by sparse sequences. In other words for every n ∈ N, E ∈ 2n and T ∈ 2n

s
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there exists aE,T ∈ Q such that

f(P )E =
∑

T∈2n
s

aE,Tf(P )T ,

for every polytope P of rank n+1. This fact can also be reformulated in terms of peak functions
and quasisymmetric functions in the following way. For T ∈ 2n

s let

D′
T =

∑

E∈2n

aE,TME .

Then the set {D′
T : T ∈ 2∗

s} ∪ {1} is a basis of Π. Moreover, the (unique) projection τ : Q → Π
such that the kernel of τ is spanned by the monomial quasi symmetric functions indexed by non
sparse sequences is given by τ(1) = 1 and

τ(MT ) =

{
D′

T , if T ∈ 2∗
s,

0, otherwise.

The projection τ is called the Eulerian projection and studied in [9] (where it is denoted by π)
but the problem of describing it explicitly is still open. Theorem 4.3 therefore can also be seen
as a solution to the analogous problem involving the fundamental basis instead of the monomial
basis.

Theorem 4.3 also allows us to complete the proof of Theorem 3.1 (and of the equivalent
Theorem 3.2).

Proof of Theorem 3.1. Recall the definitions of Bn and B′
n from §3 and that the statement

that we have to prove is equivalent to B′
n = Bn. Also recall that we have already proved that

B′
n ⊆ Bn in Proposition 3.5.

Consider the linear map φ : Vn → Qn+1 given by

φ(α) =
∑

E∈2n

αELE,

for all α ∈ Vn. By Theorems 2.1 and 2.2 we have φ(Bn) = Πn+1. Furthermore, the proof of
Theorem 4.2 shows that DT ∈ φ(B

′
n) for all T ∈ 2n

s , and since these functions span Πn+1 by
Theorem 4.3 we conclude that

φ(B′
n) = Πn+1.

As dimΠn+1 = dimBn we conclude that necessarily B′
n = Bn. ✷

As a corollary of Theorem 3.1 we also have the following characterization of Q〈a+ b, ab+ ba〉
as a subspace of Q〈a, b〉.

Corollary 4.4. Let β ∈ Vn. Then the polynomial

P (a, b) =
∑

E∈2n

βEµE ∈ Z〈a, b〉,

can be expressed as a polynomial in a+ b, ab+ ba if and only if β satisfies Eq. (10).

5. Kazhdan-Lusztig polynomials

In this section, using the results in the two previous ones, we prove a nonrecursive combinatorial
formula for the Kazhdan-Lusztig polynomials which holds in complete generality, and which is
simpler and more explicit than any existing one.
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Figure 1. The constraints of a slalom path in SL(T ), where T = 0001000010001000 (top) and
T = 000100001000100 (bottom).

Let n ∈ P, T ∈ 2n−1
s , S(T )

def
= {s1, . . . , st}<, s0

def
= 0, st+1

def
= n. We say that a lattice path Γ

is a T -slalom (the reader may want to consult Figure 1 (top) for an illustration where n is odd,
and Figure 1 (bottom) for an illustration where n is even) if and only if

– ℓ(Γ) = n;

– Γ(si + 1) 6= 0 for all i ∈ [t] (i.e. Γ does not passes through the “stars” in the examples in
Figure 1);

– Γ crosses the segment {y = −1
2 , x ∈ [si−1+1, si]} (the dotted segments in Figure 1) exactly

once for all i ∈ [t];

– Γ(x) > χeven(n) for all x > st+1 (i.e. the path Γ remains above the solid segment in Figure
1).

We denote by SL(T ) the set of T -slaloms. For T ∈ 2n−1
s we let

ΩT (q)
def
= (−1)s1+···+st+t

∑

Γ∈SL(T )

(−q)d−(Γ),

where d−(Γ) = n− d+(Γ) is the number of down-steps of Γ. For example, if T = 00100 there are
exactly three paths in SL(T ) (see Figure 2) and Ω00100(q) = −q + 2q2.

We can now state the main result of this section.

Theorem 5.1. Let (W,S) be a Coxeter system, u, v ∈W , u 6 v and ℓ = ℓ(v)− ℓ(u). Then

Pu,v(q) =
∑

T∈2∗

s

b(u, v)T q
ℓ−ℓ(T )−1

2 ΩT (q).

The rest of this section is devoted to the proof of Theorem 5.1.

Let T ∈ 2n−1, S(T )
def
= {s1, . . . , st}<, s0

def
= 0, st+1

def
= n, and Ij = (sj, sj+1) for all j ∈ [0, t].

We define J (T ) to be the set of all E ∈ 2n−1 such that:

15
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i) |∂(E) ∩ Ij| = 1 for all j ∈ [0, t− 1];

ii) |∂(E) ∩ It| 6 2;

iii) if ∂(E) ∩ It = {x, n− 1} then x ≡ n− 1 (mod 2).

Given such an E we define sgn(E,T )
def
= (−1)

∑t
j=1(sj−xj−1) where {xj}

def
= ∂(E)∩Ij−1 for j ∈ [t],

and let

Ω̃T (q)
def
=

∑

E∈J (T )

sgn(E,T )ΥE(q).

We also set J (ε)
def
= {ε} and Ω̃ε(q)

def
= Υε(q).

For the reader convenience we recall that

ΥE(q) = (−1)m0(E)
∑

Γ∈L(E)

(−q)d+(Γ),

where L(E)
def
= {Γ ∈ L(n) : N(Γ) = E}, and we make the following observation: if Γ is a lattice

path such that N(Γ) = E then ∂E is given by the points where Γ crosses the line y = −1
2 .

Example 5.2. If T = 00100, then J (T ) = {01111, 01100, 00111, 00100, 10000, 10011, 11000, 11011}
and Ω̃T (q) = −Υ01111 −Υ01100 +Υ00111 +Υ00100 −Υ10000 −Υ10011 +Υ11000 +Υ11011 = Υ00111 +
Υ00100 −Υ10000 = q5 − 2q4 + 2q2 − q.

Note that J (T ) = ∅ if T is not sparse, and that J (T ) ⊆ G(T ).

Proposition 5.3. Let (W,S) be a Coxeter system and u, v ∈W , u < v. Then

Pu,v(q)− q
ℓ(u,v)Pu,v

(
1

q

)
=

∑

T∈2∗

q
ℓ(u,v)−ℓ(T )−1

2 b(u, v)T Ω̃T (q).

Proof. Note first that, since u < v, F̃ (u, v) has no constant term. Hence from Theorems 2.7 and
4.3 we have that

F̃ (u, v) =
∑

T∈2∗

s

b(u, v)TDT .

Applying the linear map K to this equality we get, by Theorem 2.8, that

q−
ℓ(u,v)

2 Pu,v(q)− q
ℓ(u,v)

2 Pu,v

(
1

q

)
=

∑

T∈2∗

s

b(u, v)TK(DT ).

But, by our definitions, we have that

K(DT ) =
∑

E∈G(T )

sgn(E,T )K(LE) =
∑

E∈G(T )

sgn(E,T ) q−
ℓ(E)+1

2 ΥE(q). (17)

Recall that J (T ) ⊆ G(T ). Let E ∈ G(T ) \ J (T ), {y1, . . . , yk}<
def
= ∂(E). Then either |∂(E) ∩

It| > 3 or |∂(E)∩ Ij| > 2 for some j ∈ [0, t− 1]. But if either of these conditions hold then k > 3
and there exists j ∈ [k− 2] such that yj+1 ≡ yj (mod 2) and this, by Corollary 2.9, implies that
ΥE = 0. Hence we conclude from (17) that

K(DT ) =
∑

E∈J (T )

sgn(E,T ) q−
ℓ(E)+1

2 ΥE(q) = q−
ℓ(T )+1

2 Ω̃T (q),

and the result follows.
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Figure 2. Slalom paths associated to T = 00100

Figure 3. A path in L(0010001000).

Let T ∈ 2n−1
s be a sparse sequence of length n − 1, s0 = 0 and S(T ) = {s1, . . . , st}<, and

Ij = (sj, sj+1) for all j ∈ [0, t]. We let L(T ) be the set of all lattice paths Γ of length n such that
N(Γ) ∈ J (T ). For Γ ∈ L(T ) and j ∈ [t] we let xj(Γ) be the unique element in ∂(N(Γ)) ∩ Ij−1

and

εT (Γ)
def
=

t∑

j=1

(sj − xj(Γ)− 1).

We also let

η(Γ)
def
= m0(N(Γ)) = |{a in[n− 1] : Γ(a) > 0}|.

We will usually write ε(Γ) instead of εT (Γ) when the sparse sequence T is clear from the context.

Example 5.4. Let T = 0010001000, so t = 2, n − 1 = 10, S(T ) = {s1, s2} with s1 = 3 and
s2 = 7. We also have I0 = {1, 2}, I1 = {4, 5, 6} and I2 = {8, 9, 10}. The definition of L(T ) implies
that a lattice path belongs to L(T ) if and only if it has length n = 11, it crosses the two dotted
segments in Figure 3 exactly once, and crosses the solid-dotted segment at most once, but only
form NW to SE. The path Γ depicted in Figure 3 therefore belongs to L(T ). In this case N(Γ) =
0010111011 and one can easily check that x1(Γ) = 2 and x2(Γ) = 4. Finally, we can observe that
∂(N(Γ)) ∩ It = {8, 10}. Hence we have ε(Γ) = (s1 − x1(Γ) − 1) + (s2 − x2(Γ)− 1) = 0 + 2 = 2.
Moreover, we have η(Γ) = 4 and d+(Γ) = 5.

The following result is a direct consequence of the definitions of the polynomials Ω̃T and ΥE

17
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and so we omit its proof.

Proposition 5.5. Let n ∈ P and T ∈ 2n−1
s . Then

Ω̃T (q) =
∑

Γ∈L(T )

(−1)ε(Γ)+η(Γ)+d+(Γ)qd+(Γ).

Our next target is to simplify the sum in Proposition 5.5. For this we introduce the following

notation: if T ∈ 2n−1
s , s0 = 0 and S(T ) = {s1, . . . , st}<, we let rj

def
= sj + 1 for j ∈ [0, t] and let

L0(T )
def
= {Γ ∈ L(T ) : Γ(rj) = 0 for some j ∈ [t]}.

For example the path Γ depicted in Figure 3 belongs to L0(0010001000) as Γ(4) = 0.

Proposition 5.6. Let n ∈ P and T ∈ 2n−1
s . Then

∑

Γ∈L0(T )

(−1)ε(Γ)+η(Γ)+d+(Γ)qd+(Γ) = 0.

Proof. For j ∈ [t] let L
(j)
0 (T ) = {Γ ∈ L0(T ) : min{i ∈ [t] : Γ(ri) = 0} = j}. The result follows if

we can find an involution

φ : L
(j)
0 (T )→ L

(j)
0 (T )

such that

– d+(Γ) = d+(φ(Γ)),

– ε(Γ) + η(Γ) ≡ ε(φ(Γ)) + η(φ(Γ)) + 1 (mod 2),

for all Γ ∈ L
(j)
0 (T ). The bijection φ is defined as follows. Fix an arbitrary path Γ ∈ L

(j)
0 (T ). Let

i be the maximum index smaller than j such that Γ(si) = 0. In the interval [rh, sh+1], where
h ∈ [i, j − 1], the path φ(Γ) is defined as follows (see Figure 4 for an illustration)

φ(Γ)(x) =




Γ(x),

if there exist a, b ∈ N such that

rh < a < x < b < sh+1 and Γ(a) = Γ(b) = 0,

−Γ(x), otherwise,

for all x ∈ [rh, sh+1]. Finally we let φ(Γ)(x) = Γ(x) if x /∈ [ri, sj]. Note that, since Γ(si) =
Γ(sj + 1) = 0, we have that |Γ(ri)| = |Γ(sj)| = 1 so φ(Γ) is still a lattice path.

Since Γ(rh) 6= 0 and Γ(sh+1) 6= 0 for all h ∈ [i, j − 1] by construction, one can easily see that

φ is an involution on L
(j)
0 (T ). It is also clear that d+(Γ) = d+(φ(Γ)) as Γ(n) = φ(Γ)(n).

Now we observe that a lattice path crosses the line {y = −1
2} from NW to SE always at an

even index, and from SW to NE always at an odd index. It then follows from our construction
that xh(Γ) ≡ xh(φ(Γ)) + 1 (mod 2) for all h ∈ [i + 1, j] (see also Figure 4), and that clearly
xh(Γ) = xh(φ(Γ)) if h /∈ [i+ 1, j]. Therefore

ε(Γ) + ε(φ(Γ)) ≡ j − i (mod 2). (18)
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Figure 4. The bijection φ in [rh, sh+1].

Finally, we have that (see also Figure 4)

η(Γ) + η(φ(Γ)) ≡

j−1∑

h=i

(xh+1(φ(Γ)) − sh) +

j−1∑

h=i

(sh+1 − xh+1(Γ))

≡

j−1∑

h=i

(xh+1(φ(Γ)) − xh+1(Γ) + sh+1 − sh)

≡ j − i+ sj − si

≡ j − i+ 1 (mod 2) (19)

since Γ(si) = Γ(sj + 1) = 0.

The result then follows from (18) and (19).

If n is even other cancellations may occur in Proposition 5.5 and to describe this, for T ∈ 2n−1
s

we also let

L′0(T ) = {Γ ∈ L(T ) : Γ(x) = 0 for some x ∈ [rt, n]}.

Proposition 5.7. Let n ∈ P be even and T ∈ 2n−1
s . Then

∑

Γ∈L′

0(T )\L0(T )

(−1)ε(Γ)+η(Γ)+d+(Γ)qd+(Γ) = 0.

Proof. This proof is similar to that of Proposition 5.6. We show that there exists an involution ψ
on L′0(T )\L0(T ) such that d+(Γ) = d+(ψ(Γ)) and ε(Γ)+η(Γ) ≡ ε(ψ(Γ))+η(ψ(Γ))+1 (mod 2),
for all Γ ∈ L′0(T ) \ L0(T ).

If Γ ∈ L′0(T ) \ L0(T ) let a0 = min{a ∈ [rt, n] : Γ(a) = 0} and i = max{j ∈ [0, t] : Γ(si) = 0}.
The path ψ(Γ) is defined in the following way: if ri 6 x 6 st we let

ψ(Γ)(x) =




Γ(x),

if there exist h ∈ [t] and a, b ∈ N such that

rh−1 < a < x < b < sh and Γ(a) = Γ(b) = 0,

−Γ(x), otherwise.

Observe that in this situation Γ(rh−1) 6= 0 since Γ /∈ L0(T ) and Γ(sh) 6= 0 by the maximality
of the index i. Finally, we let ψ(Γ)(x) = −Γ(x) if x ∈ [rt, a0] and ψ(Γ)(x) = Γ(x) if x > a0 or
x 6 si.
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Figure 5. A path in L̃(0001000010001000).

Note that, since n− 1 is odd we have Γ(x) > 0 for all x > a0. By reasoning as in the proof of
Proposition 5.6 one obtains that ε(Γ) + ε(ψ(Γ)) ≡ t− i (mod 2) and η(Γ) + η(ψ(Γ)) ≡ t− i− 1
(mod 2) (since Γ(si) = Γ(a0) = 0), thereby completing the proof.

Propositions 5.6 and 5.7 lead us to consider the set of paths L̃(T ) given by L̃(T )
def
= L(T ) \

(L0(T ) ∪L
′
0(T )) if n is even and L̃(T )

def
= L(T ) \ L0(T ) if n is odd associated to T ∈ 2n−1

s . Note
that Γ(n) 6= 0 if Γ ∈ L̃(T ). Figure 5 shows an example of a path in L̃(T ).

Now we want to show that there are no further cancellations in the sum appearing in Propo-
sition 5.5. More precisely, if we let χΓ(n)>0 = 1 if Γ(n) > 0 and χΓ(n)>0 = 0 otherwise, we have
the following result.

Theorem 5.8. Let n ∈ P, T ∈ 2n−1
s and Γ ∈ L̃(T ). Then

ε(Γ) + η(Γ) ≡ χΓ(n)>0χeven(n) +

t∑

j=1

rj (mod 2).

Proof. Suppose i, k ∈ [0, t], i < k are such that Γ(si) = Γ(sk) = 0 and Γ(sh) 6= 0 for all h ∈ (i, k).

We consider ηi,k(Γ)
def
= |{a ∈ [ri, sk] : Γ(a) > 0}| and ζi,k(Γ)

def
=

∑k
h=i+1 xh(Γ) and we claim that

ηi,k(Γ) + ζi,k(Γ) ≡ 0 (mod 2). (20)

As Γ(sk) = 0 we have that Γ crosses the segment {y = −1
2 , x ∈ [rk−1, sk]} from SW to NE and

therefore xk(Γ) ≡ 1 (mod 2). Consequently Γ crosses the segment {y = −1
2 , x ∈ [rk−2, sk−1]}

from NW to SE and hence xk−1(Γ) ≡ 0 (mod 2). Iterating this observation we have that xk(Γ) ≡
xk−2(Γ) ≡ · · · ≡ 1 (mod 2) and xk−1(Γ) ≡ xk−3(Γ) ≡ · · · ≡ 0 (mod 2). Therefore

ζi,k(Γ) =

k∑

h=i+1

xh(Γ) ≡ ⌊
k − i+ 1

2
⌋ (mod 2).

If k − i is odd we have that Γ(ri) < 0 and the number of maximal intervals contained in
[ri, sk] where Γ takes nonnegative values is k−i+1

2 and all such intervals contain an odd number

of elements. If k− i is even then Γ(ri) > 0 and there are k−i
2 such intervals with an odd number

of elements and one interval with an even number of elements (i.e. the one containing ri). In
both cases we deduce that ηi,k(Γ) ≡ ⌊

k−i+1
2 ⌋. Therefore

ηi,k(Γ) + ζi,k(Γ) ≡ ⌊
k − i+ 1

2
⌋+ ⌊

k − i+ 1

2
⌋ ≡ 0 (mod 2)
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Now let i be the maximum index such that Γ(si) = 0. We let in this case ηi,t+1(Γ)
def
= |{a ∈

[ri, n − 1] : Γ(a) > 0}| and ζi,t+1(Γ)
def
=

∑t
h=i+1 xh(Γ). We leave to the reader to verify that if

Γ(n) > 0 and n is even then ηi,t+1(Γ) ≡ ⌊
t−i−1

2 ⌋ and ζi,t+1(Γ) ≡ ⌊
t−i+1

2 ⌋ and therefore

ηi,t+1(Γ) + ζi,t+1(Γ) ≡ 1.

In all the other cases we have ηi,t+1(Γ) + ζi,t+1(Γ) ≡ 0; in fact, with an argument similar to the
one used in the previous case one can show that:

– if n is even and Γ(n) < 0 we have ηi,t+1(Γ) ≡ ζi,t+1(Γ) ≡ ⌊
t−i
2 ⌋;

– if n is odd and Γ(n) > 0 we have ηi,t+1(Γ) ≡ ζi,t+1(Γ) ≡ ⌊
t−i+1

2 ⌋;

– if n is odd, Γ(n) < 0 and Γ(rt) < 0 we have ηi,t+1(Γ) ≡ ζi,t+1(Γ) ≡ ⌊
t−i
2 ⌋;

– if n is odd, Γ(n) < 0 and Γ(rt) > 0 we have ηi,t+1(Γ) ≡ ζi,t+1(Γ) ≡ ⌊
t−i−1

2 ⌋.

Now we can conclude the proof. Let Γ ∈ L̃(T ) and let {i1, . . . , iz}< = {h ∈ [0, t] : Γ(sh) =
0} ∪ {t+ 1}. We have

η(Γ) + ε(Γ) ≡
z−1∑

v=1

(
ηiv,iv+1(Γ) + ζiv,iv+1(Γ)

)
+ r1 + · · · + rt (mod 2)

≡ χΓ(n)>0χeven(n) + r1 + · · ·+ rt (mod 2).

Corollary 5.9. Let n ∈ P and T ∈ 2n−1
s . Then

[qi]Ω̃T = (−1)i+r1+···+rt+χ2i>nχeven(n)|{Γ ∈ L̃(T ) : Γ(n) = 2i− n}|,

where χ2i>n = 1 if 2i > n and χ2i>n = 0 otherwise.

Proof. This follows immediately from Propositions 5.5, 5.6 and 5.7, and Theorem 5.8, together
with (7).

Corollary 5.10. Let n ∈ P, and T ∈ 2n−1
s . Then

qnΩ̃T

(
1

q

)
= −Ω̃T (q).

Proof. A bijection φ constructed as in the proof of Proposition 5.6 shows that for all i ∈ [0, n]

|{Γ ∈ L̃(T ) : Γ(n) = n− 2i}| = |{Γ ∈ L̃(T ) : Γ(n) = 2i− n}|.

and the result follows from Corollary 5.9.

Let T ∈ 2n−1
s . Note that a lattice path Γ is a T -slalom if and only if Γ ∈ L̃(T ) and Γ(n) > 0.

We can now complete the proof of the main result of this work.

Proof of Theorem 5.1. First a notation. If P (q) is a polynomial and x ∈ Q we let

Dx(P )(q) =

⌊x⌋∑

i=0

[qi](P (q)) qi,

the polynomial obtained by deleting the homogeneous components of P of degree greater than
x. By Proposition 5.3 we have that

Pu,v(q)− q
ℓ(u,v)Pu,v(1/q) =

∑

T∈2∗

s

q
ℓ(u,v)−ℓ(T )−1

2 b(u, v)T Ω̃T (q).
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Since degPu,v 6
ℓ(u,v)−1

2 we have that

Pu,v(q) =
∑

T∈2∗

s

q
ℓ(u,v)−ℓ(T )−1

2 b(u, v)TD ℓ(T )
2

(Ω̃T )(q).

Now we observe that if ℓ(T ) = n− 1 then i 6 ℓ(T )
2 if and only if 2i − n < 0 and so in this case,

by Corollaries 5.9 and 5.10 we have

[qi]Ω̃T (q) = (−1)i+r1+···+rt |{Γ ∈ L̃(T ) : Γ(n) = 2i− n}|

= (−1)i+r1+···+rt |{Γ ∈ L̃(T ) : Γ(n) = n− 2i}|

= (−1)i+r1+···+rt |{Γ ∈ SL(T ) : d−(Γ) = i}|

= [qi]ΩT (q).

As degΩT 6
ℓ(T )
2 the proof is complete ✷.

We illustrate the preceding theorem with some examples. If ℓ(u, v) = 1 then we have from
Theorem 5.1 and our definitions that

Pu,v(q) = q−
ℓ(ε)
2 bεΩε(q) = 1.

Similarly we obtain

Pu,v(q) = b0 Ω0(q) = 1

if ℓ(u, v) = 2 (where we have used the fact that b0(u, v) = 1 if ℓ(u, v) = 2) and

Pu,v(q) = b00 Ω00(q) + b01Ω01(q) + q bεΩε(q)

= b00(1− 2q) + b01(q) + q bε

= 1 + q(−2 + b01 + bε),

if ℓ(u, v) = 3.

We feel that the formula obtained in Theorem 5.1 is the simplest and most explicit nonrecur-
sive combinatorial formula known for the Kazhdan-Lusztig polynomials that holds in complete
generality since this formula, as the one in [8, Corollary 3.2], expresses the Kazhdan-Lusztig poly-
nomial of u, v ∈W as a sum of at most fℓ(u,v) summands, as opposed to 2ℓ(u,v) + 2ℓ(u,v)−2 + · · ·
for the one obtained in [15, Theorem 7.2], each one of which is the product of a number, which
depends on u, v, and W , with a polynomial, that is independent of u, v, and W . However, this
formula is more explicit than the one obtained in [8, Corollary 3.2] since in the formula obtained
in [8] the polynomials have a combinatorial interpretation, but no combinatorial interpretation
is known for the numbers, while in the formula obtained in Theorem 5.1 both the numbers and
the polynomials have a combinatorial interpretation.

We conclude this section by observing that the explicit formula appearing in Theorem 5.1
cannot be further simplified by means of linear relations in a sense that we are going to make
precise. The main point here is the following result of Reading [36].

Theorem 5.11. For all n ∈ N the vector subspace of Q〈a, b〉 spanned by the cd-indices of all
Bruhat intervals of rank n+ 1 equals the space of cd-polynomials of degree n and has therefore
dimension fn+1.

Consider the vector space V consisting of functions α : 2∗ → Q such that αE 6= 0 for at most
a finite number of sequences E. Also let W be the subspace of V given by the functions that
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satisfy the dual Bayer-Billera relations. Note that we have b(u, v) ∈ W by Corollary 4.4.

Corollary 5.12. The vector space W is spanned by the functions b(u, v) as [u, v] varies among
all possible Bruhat intervals.

Proof. The vector space W has a natural filtration given by

W =

∞⋃

n=1

Wn,

where

Wn = {β ∈ W : βE = 0 whenever ℓ(E) > n}.

It is therefore enough to show that Wn is spanned by the functions b(u, v) it contains and for
this we proceed by induction on n. If n = 0 we let [u, v] be any Bruhat interval of length 1 and
in this case we have b(u, v)ε = 1 by definition.

So let n > 0 and observe that Wn/Wn−1 has dimension fn+1 and that if ℓ(u, v) = n + 1
then b(u, v) ∈ Wn. Moreover we have that the values b(u, v)E as E ranges in 2n are precisely
the coefficients of the cd-index of [u, v]. Therefore, by Theorem 5.11, if β ∈ Wn then there exist
Bruhat intervals [u1, v1], . . . , [ufn+1 , vfn+1 ] and coefficients c1, . . . , cfn+1 ∈ Q such that

β −

fn+1∑

i=1

cib(ui, vi) ∈ Wn−1,

and the result follows by induction.

The following is now a straightforward consequence that makes precise the sense in which
Theorem 5.1 can not be linearly simplified.

Corollary 5.13. Let aT ∈ Q, T ∈ 2∗
s be such that
∑

T∈2∗

s

aT b(u, v)T = 0

for all Bruhat intervals [u, v]. Then aT = 0 for all T ∈ 2∗
s.

6. Linear relations for Bruhat paths

In this section we study and explicitly describe the complete cd-index of some families of Bruhat
intervals. In this study we give a new general construction of reflection orderings in arbitrary
Coxeter groups, and we provide a new descent criterion in some infinite Coxeter groups; both of
these result may be of independent interest.

We also show that that for any m,n ∈ N, m 6 n and m ≡ n (mod 2) the homogeneous
components of degree m of the complete cd-indices of all possible Bruhat intervals of rank n+1
span a vector space of dimension fk+1. This generalizes Theorem 5.11 that can be reinterpreted
as the particular case m = n. We conclude this work by stating a conjecture that would further
generalize this result.

6.1 Construction of reflection orderings

We start with a general construction of reflection orderings. Let (W,S) be a Coxeter system, Π be
the associated set of simple roots, and Φ+ = Φ+(W ) the associated set of positive roots. A weight
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function on Φ+ is a map p : Φ+ → R>0 which is linear, in the sense that if β = c1β1 + c2β2, with
β, β1, β2 ∈ Φ+ and c1, c2 ∈ N, then p(β) = c1p(β1)+c2p(β2). It is clear that a weight function p is
uniquely determined by its images on Π and that the set Φ+

0 (p) = {β ∈ Φ+ : p(β) = 0} is the set
of positive roots of a parabolic subgroup ofW . Let I = (α1, . . . , αl) be an indexing (total ordering)
of the elements in Π. Then the associated lexicographic order on the root space Rα1⊕ · · · ⊕Rαl

is given by
∑
ciαi <

∑
diαi if (c1, . . . , cl) is smaller than (d1, . . . , dl) lexicographically.

LetW be a Coxeter group, p be a weight function on Φ+(W ), andW ′ the parabolic subgroup
of W given by Φ+(W ′) = Φ+

0 (p). Let ≺ be a reflection ordering on Φ+(W ′) and I an indexing
of Π. Then we define a total ordering ≪ on Φ+ depending on p,≺, I in the following way: for
β, β′ ∈ Φ+ we let β ≪ β′ if one of the following conditions apply:

– p(β) = p(β′) = 0 and β ≺ β′;

– p(β) 6= 0 and p(β′) = 0;

– p(β), p(β′) 6= 0 and β
p(β) <

β′

p(β′) in the lexicographic order associated to I.

It is clear that ≪ is a total ordering on Φ+(W ).

Proposition 6.1. The total ordering ≪ on Φ+(W ) constructed above is a reflection ordering.

Proof. We have to show that if β = c1β1 + c2β2, with β, β1, β2 ∈ Φ+, c1, c2 ∈ R>0, and β1 ≪ β2
then β1 ≪ β ≪ β2.

– If p(β1) = p(β2) = 0 then β1, β2 ∈ Φ+(W ′) and hence also β ∈ Φ+(W ′); the result follows
since ≺ is a reflection ordering on Φ+(W ′);

– if p(β1) 6= 0 and p(β2) = 0 then p(β) = c1p(β1) > 0 and in particular β ≪ β2. Moreover, if
we denote by xi(β) the i-th coordinate of β with respect to the chosen indexing I on Π (so
β =

∑l
i=1 xi(β)αi) we have

xi(β)

p(β)
=
xi(c1β1 + c2β2)

c1p(β1)
=
c1xi(β1) + c2xi(β2)

c1p(β1)
>
xi(β1)

p(β1)
.

– if p(β1), p(β2) 6= 0 then

xi(β)

p(β)
=

xi(c1β1 + c2β2)

c1p(β1) + c2p(β2)
=
c1p(β1)

xi(β1)
p(β1)

+ c2p(β2)
xi(β2)
p(β2)

c1p(β1) + c2p(β2)

which shows that xi(β)
p(β) is a convex linear combination of xi(β1)

p(β1)
and xi(β2)

p(β2)
, completing the

proof.

Note that Proposition 6.1 vastly generalizes Proposition 5.2.1 of [12].

Corollary 6.2. Let (W,S) be a Coxeter system and P be the maximal parabolic subgroup
generated by S \ {s}, for some s ∈ S. Then there exists a reflection ordering ≪ on Φ+ such that

– t≪ s for every reflection t in W ;

– if t is a reflection in P then t≪ sts;

– if t and t′ are reflections in P then t≪ t′ if and only if sts≪ st′s.

Proof. Consider an indexing I of Π = {α1, . . . , αl} with αl = αs and the weight function given
by p(αi) = 1 if i < l and p(αl) = 0. Let ≪ be the reflection ordering constructed above with
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respect to p and I (there is no choice for ≺ in this case). It is clear that αs is the maximal
element. If t is a reflection in P we have that

αsts = s(αt) = αt + cαl,

for some nonnegative integer c. In particular p(αsts) = p(αt) and, by Proposition 6.1, αt ≪
αsts ≪ αs. Now let t, t′ be reflections in P . We clearly have p(t), p(t′) 6= 0. Since p(αsts) = p(αt)
and all the coordinates but the last one of αt and αsts coincide (and similarly for t′) we deduce
that t≪ t′ if and only if sts≪ st′s.

6.2 The pyramid over a Bruhat interval

Let (W,S) be a Coxeter system and [u, v] be an interval in W . We say that an interval [u, vs] is
a pyramid over [u, v] if s ∈ S and s 66 v. The name pyramid comes from the fact that if [u, v]
is isomorphic as a poset to the face lattice of a polytope P then [u, vs] is isomorphic to the face
lattice of a pyramid over P .

The following result states that the complete cd-index of a pyramid over a Bruhat interval
does not depend on s, generalizes [22] and expresses the complete cd-index of the pyramid [u, vs]
in terms of the complete cd-index of [u, v] and of smaller intervals.

Proposition 6.3. Let [u, v] be a Bruhat interval and [u, vs] be a pyramid over [u, v]. Then

Ψ̃u,vs =
1

2

(
Ψ̃u,vc+ cΨ̃u,v +

∑

x∈(u,v)

Ψ̃u,xdΨ̃x,v

)
.

In particular Ψ̃u,vs does not depend on s.

Proof. We start with an observation. If x < v then any path ∆ in the Bruhat graph ∆ = (x0
t1−→

x1
t2−→ · · ·

tr+1
−→ xr+1) from x to v corresponds to a path ∆′ = (x0s

st1s−→ x1s
st2s−→ · · ·

str+1s
−→ xr+1s)

from xs to vs. This correspondence is a bijection between paths from x to v and paths from xs
to vs; moreover, if we consider the reflection ordering≪ defined in Corollary 6.2, we have that if
∆ corresponds to ∆′ in this correspondence then m≪(∆) = m≪(∆′). We also observe that if we
consider the lower s-conjugate ≪s of ≪ (see [8, Proposition 5.2.3]) given in this case by r ≪s r

′

if and only if either r = s or srs≪ sr′s, we still obtain m≪s(∆) = m≪s(∆
′).

Given a path ∆ = (u0
t1−→ u1

t2−→ · · ·
tr+1
−→ ur+1) from u to vs there exists a unique x ∈ [u, v]

such that ui = x and ui+1 = xs. We denote it by x(∆) and in the computation of the complete
cd-index

Ψ̃u,vs =
∑

∆∈B(u,vs)

m(∆)

we split the sum on the right-hand side according to x(∆). We first consider the reflection ordering
≪. In this case we have

∑

{∆∈B(u,vs): x(∆)=u}

m≪(∆) = b ·
∑

∆′∈B(us,vs)

m≪(∆′) = b ·
∑

∆∈B(u,v)

m≪(∆) = b · Ψ̃u,v.

and ∑

{∆∈B(u,vs): x(∆)=v}

m≪(∆) =
∑

∆∈B(u,v)

m≪(∆) · a = Ψ̃u,v · a,
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where we have used the fact that s is the maximal reflection in the ordering≪ and the observation
at the beginning of the present proof. If x ∈ (u, v) we have

∑

{∆∈B(u,vs): x(∆)=x}

m≪(∆) =
∑

∆∈B(u,x)

m≪(∆) · ab ·
∑

∆′∈B(xs,vs)

m≪(∆′) = Ψ̃u,xabΨ̃x,v

and we conclude that

Ψ̃u,vs = b · Ψ̃u,v + Ψ̃u,v · a+
∑

x∈(u,v)

Ψ̃u,xabΨ̃x,v.

By reasoning in a similar way with the ordering ≪s we can obtain the analogous formula

Ψ̃u,vs = a · Ψ̃u,v + Ψ̃u,v · b+
∑

x∈(u,v)

Ψ̃u,xbaΨ̃x,v

and the result follows by “averaging” these two expressions for Ψ̃u,vs.

Consider the derivation Dd on A. One easily checks that Dd restricts to a derivation on the
space of cd-polynomials as δ(c) = δ(a+ b) = 2(1⊗ 1) and so Dd(c) = 2d and δ(d) = δ(ab+ ba) =
a ⊗ 1 + 1 ⊗ b + b ⊗ 1 + 1 ⊗ a and so Dd(d) = ad + db + bd + da = dc + cd. Corollary 2.6 and
Proposition 6.3 therefore allow us to write

Ψ̃u,vs =
1

2

(
Ψ̃u,vc+ cΨ̃u,v +Dd(Ψ̃u,v)

)

which shows that Ψ̃u,vs depends on Ψ̃u,v only. Let G′ be the derivation on A given by G′(a) = ab
and G′(b) = ba so that G′(c) = d and G′(d) = dc. The next result is then a consequence of [22,
Lemma 5.1 and Theorem 5.2].

Corollary 6.4. Let (W,S) be a Coxeter system, u, v ∈ W , u < v, and s ∈ S be such that
s 66 v. Then

Ψ̃u,vs = cΨ̃u,v +G′(Ψ̃u,v).

Similarly, one can prove the following “left version” of Corollary 6.4.

Corollary 6.5. Let (W,S) be a Coxeter system, u, v ∈ W , u < v, and s ∈ S be such that
s 66 v. Then

Ψ̃u,sv = cΨ̃u,v +G′(Ψ̃u,v).

6.3 3-complete Coxeter systems

Let (W,S) be the Coxeter system of rank l such that m(s, s′) = 3 for all s, s′ ∈ S, s 6= s′. We
call this the 3-complete Coxeter system (or group) of rank l.

Our first result can be interpreted as a concrete criterion to determine the set of (left) descents
of a generic element in a 3-complete Coxeter group: it is used in the sequel in the construction
of reflection orderings, but is interesting in its own right.

Let (W,S) be a 3-complete Coxeter system of rank l, S = {s1, . . . , sl} and let W ′ be the
parabolic subgroup of W generated by S \ {s1} (note that W ′ is a 3-complete Coxeter group of
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rank l − 1). We also let Π = {α1, . . . , αl} where αi is the simple root corresponding to si for all
i ∈ [l]. We observe that

si(αj) =

{
αi + αj if i 6= j;

−αi if i = j.

We consider the W ′-orbit of the simple root α1 to study the sets of left descents of elements in
W ′. We adopt the following notation: for all w ∈W ′ we let ci(w), di(w) ∈ Z, i ∈ [l], be given by

w(α1) =

l∑

i=1

ci(w)αi

and di(w)
def
= 2ci(w) −

∑
k 6=i ck(w). We note that in the notation of [29, Section 5.3] we have

di(w) = B(w(α1), αi), where B denote the inner product on the root space of an arbitrary
Coxeter group. Before proving the main result about the coefficients di(w) we need the following
preliminary result.

Lemma 6.6. Let u ∈W ′. Then for all i, j ∈ [2, l], i 6= j, we have

(a) di(siu) = −di(u);

(b) dj(siu) = di(u) + dj(u).

Proof. We first observe that for all u ∈W ′ we have

ci(sju) =

{
ci(u), if i 6= j;
∑

k 6=i ck(u)− ci(u), if i = j.
(21)

(a) We have

di(siu) = 2ci(siu)−
∑

k 6=i

ck(siu) = 2
∑

k 6=i

ck(u)− 2ci(u)−
∑

k 6=i

ck(u) = −di(u).

(b) We have

dj(siu) = 2cj(siu)−
∑

k 6=i,j

ck(siu)− ci(siu) = 2cj(u)−
∑

k 6=i,j

ck(u)−
∑

k 6=i

ck(u) + ci(u)

= 2cj(u)−
∑

k 6=j

ck(u) + 2ci(u)−
∑

k 6=i

ck(u) = di(u) + dj(u).

For w ∈W we let DesL(w)
def
= {i ∈ [l] : siw < w}.

Proposition 6.7. Let w ∈W ′ and i ∈ [2, l]. Then di(w) 6= 0 and

di(w) > 0⇔ i ∈ DesL(w).

Proof. We proceed by induction on ℓ(w). If ℓ(w) = 0 then di(w) = −1 and i /∈ DesL(w), and the
statement is true. So let ℓ(w) > 1.

If i ∈ DesL(w) let w = siu, with i /∈ DesL(u). By the induction hypothesis we have di(u) < 0
and so, by Lemma 6.6, we have di(w) = −di(u) > 0.

If i /∈ DesL(w) let j be such that j ∈ DesL(w) and w = sju, with j /∈ DesL(u). Now two
cases occur: if i /∈ DesL(u) we have by induction that di(u), dj(u) < 0 and so, by Lemma 6.6 we
conclude that di(w) = di(u) + dj(u) < 0. If i ∈ DesL(u) we let ũ be such that w = sjsiũ, with
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ℓ(w) = ℓ(ũ)+2. We have that j /∈ DesL(ũ) since otherwise we could obtain a reduced expression
for w starting with si. Therefore, by induction we have dj(ũ) < 0. Using Lemma 6.6 we then
conclude that di(w) = di(siũ) + dj(siũ) = −di(ũ) + dj(ũ) + di(ũ) = dj(ũ) < 0.

Corollary 6.8. For all w ∈ W ′ we have ht(w(α1)) > ℓ(w) + 1, where ht denotes the height
function defined by ht(

∑
ciαi) =

∑
ci.

Proof. We proceed by induction on ℓ(w), the result being trivial if ℓ(w) = 0. So let ℓ(w) > 0,
i ∈ DesL(w) and w = siu. Using Eq. (21) we easily have that ci(w) = ci(u) − di(u). Therefore
we have

ht(w(α1)) = ht(u(α1))− di(u) > ℓ(u) + 1− di(u) = ℓ(w) − di(u)

and the result follows since di(u) < 0 by Proposition 6.7.

We now show the existence of reflection orderings in a 3-complete Coxeter group satisfying
some particular properties.

Lemma 6.9. Let (W,S) be a 3-complete Coxeter system, s ∈ S and P be the parabolic subgroup
of W generated by S \ {s}. Then there exists a reflection ordering ≪ such that for any reflection
t ∈ P and any element z ∈ P , ℓ(z) > 2, we have

t≪ szsz−1s≪ sts≪ s.

Proof. We consider the reflection ordering≪ constructed as in Proposition 6.1, where the weight
p = ht is the height function, and the indexing I = (α1, . . . , αl) is such that α1 = αs (there is no
choice for ≺ here, since Φ+

0 (ht) = ∅), so s ∈ S is the simple reflection corresponding to α1. It is
enough to show that

x1(αt)

ht(αt)
<
x1(sz(αs))

ht(sz(αs))
<
x1(s(αt))

ht(s(αt))
<
x1(αs)

ht(αs)
.

Since x1(αt) = 0 and x1(αs)
ht(αs)

= 1 we have to show that

0 <
x1(sz(αs))

ht(sz(αs))
<
x1(s(αt))

ht(s(αt))
< 1.

Recall that we have r(αr′) = αr + αr′ for all r, r
′ ∈ S, r 6= r′. In particular we have, since t ∈ P

s(αt) = αt + ht(αt)αs.

It follows that x1(s(αt))
ht(s(αt))

= 1
2 and so to conclude the proof we only have to show that

0 <
x1(sz(αs))

ht(sz(αs))
<

1

2

for all z ∈ P , ℓ(z) > 2. So let z(αs) = αs +
∑

i>2 ciαi. By Corollary 6.8 we have ht(z(αs)) =

1+
∑

i>2 ci > ℓ(z)+1 and in particular we have c
def
=

∑
i>2 ci > 2. Therefore sz(αs) = (c−1)αs+∑

i>2 ciαi and so x1(sz(αs)) = c− 1 and ht(sz(αs)) = 2c− 1. The result follows.

Proposition 6.10. Let (W,S) be a 3-complete Coxeter system. Let r, s ∈ S, r 6= s. Let P be
the parabolic subgroup of W generated by S \ {r, s}. Then there exists a reflection ordering ≪
such that for every t, z, w ∈ P , t a reflection, ℓ(z) > 2, we have

t≪ szsz−1s≪ sts≪ s
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and

t≪ swrw−1s≪ sts.

Moreover t≪ wsw−1, t≪ wrw−1 and r≪ s.

Proof. We consider the weight p given by p(α) = 1 for all α ∈ Π \ {αr} and p(αr) = 2. We also
consider an indexing I of Π = {α1, α2, . . . , αℓ} such that α1 = αs and α2 = αr and we let ≪
be the reflection ordering associated to p and I (again there is no choice for ≺ as Φ+

0 (p) = ∅).
As the restriction of ≪ to the parabolic subgroup generated by S \ {r} is the reflection ordering
considered in Lemma 6.9 the first part of the statement follows.

For the second part we first observe that w(αr) = αr+
∑

i>3 ciαi. Let c
def
=

∑
i>3 ci > 0. Then

sw(αr) = (c+ 1)αs + αr +
∑

i>3 ciαi and x1(sw(αr)) = c+ 1 > 1, which implies t≪ swrw−1s.
Moreover we have

x1(sw(αr))

p(sw(αr))
=

c+ 1

2c+ 3
<

1

2
=
x1(s(αt))

p(s(αt))

implying swrw−1s ≪ sts. The relations t ≪ wsw−1, t ≪ wrw−1 and r ≪ s are all clear from
the definition.

We can now prove the second main result of this section.

Theorem 6.11. Let (W,S) be a 3-complete Coxeter system. Let r, s ∈ S, r 6= s, and P be the
parabolic subgroup generated by S \ {s, r}. Then for all v ∈ P , v 6= e, we have

Ψ̃e,svs + d · Ψ̃e,v = Ψ̃e,rvs + Ψ̃e,v.

Proof. We establish the result by means of an explicit bijection. In particular we exhibit a
bijection σ between B(e, svs) ∪ B(e, v) ∪ B(e, v) and B(e, rvs) ∪ B(e, v), where B(e, v) is just
a copy of B(e, v), which is well-behaved with respect to the contributions of these paths to the
corresponding complete cd-indices in the following sense. If ∆ ∈ B(e, svs) or ∆ ∈ B(e, rvs)
we consider the monomial m(∆) = m≪(∆) with respect to the reflection ordering ≪ studied
in Proposition 6.10. If ∆ ∈ B(e, v) (or ∆ ∈ B(e, v)) we consider the monomial m≪s(∆) with
respect to the lower s-conjugate ≪s of ≪. With this convention we will show that the bijection
σ has the following properties:

(i) if ∆ ∈ B(e, svs) then m(σ(∆)) = m(∆);

(ii) if ∆ ∈ B(e, v) then m(σ(∆)) = ab ·m(∆);

(iii) if ∆ ∈ B(e, v) then m(σ(∆)) = ba ·m(∆).

Consider the Bruhat graph of [e, svs]: the vertices of this graph can be visualized as in Figure
6, where the four shaded regions correspond respectively from left to right to: (1) elements of the
form sxs, for some x 6 v; (2) elements of the form sx for some x 6 v; (3) elements of the form
xs for some x 6 v; (4) elements smaller than or equal to v. The bijection σ is defined as follows.
Let ∆ ∈ B(e, svs). If the smallest element in the path ∆ which is strictly greater than s is of the
form sxs for some x 6 v then by the Exchange Condition (see, e.g., [12, Theorem 1.4.3]), sxs ∈ T

and ∆ is necessarily of the form ∆ = (x0
st1s−→ sx1s

st2s−→ · · ·
strs−→ sxrs), with ti ∈ P and xi 6 v for

all i ∈ [r] (see Figure 6, left), and we define σ(∆) = (x0
t1−→ x1

t2−→ · · ·
tr−→ xr) ∈ B(e, v); since

stis≪ sti+1s if and only if ti ≪s ti+1 we clearly have m≪s(σ(∆)) = m≪(∆).

Suppose now that the smallest element in the path ∆ which is strictly greater than s is of
the form xs for some x 6 v (see Figure 6, right).
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sxs

x

xks
sxks

Figure 6. Paths in the Bruhat graph of [e, svs]

Then ∆ is of the form

∆ = (x0
t1−→· · ·

ti−1
−→ xi−1

s
−→ xi−1s

stis−→ xis · · ·
stks−→ xks

sx−1
k

sxks
−→ sxks

stk+1s
−→ · · ·

strs−→ sxrs)

for some integers i, k such that r > k > i − 1 > 0, k > 1, where t1, . . . , tr ∈ P , x1, . . . , xr 6 v.
In this case we define σ(∆) ∈ B(e, rvs) essentially by replacing the letter s “on the left” by r.
More precisely we let

σ(∆) =(x0
t1−→ · · ·

ti−1
−→ xi−1

s
−→ xi−1s

stis−→ xis · · ·
stks−→ xks

sx−1
k

rxks
−→ rxks

stk+1s
−→ · · ·

strs−→ rxrs)

and it follows from Proposition 6.10 that m≪(σ(∆)) = m≪(∆) (we observe here that if ℓ(xk) = 1
then sx−1

k sxks = xk and in particular we still have sx−1
k sxks≪ sts for all reflections t ∈ P ).

Finally, if the smallest element strictly greater than s in the path ∆ is of the form sx for
some x 6 v, then ∆ is of the form

∆ = (x0
t1−→· · ·

ti−1
−→ xi−1

x−1
i−1sxi−1
−→ sxi−1

ti−→ sxi · · ·
tk−→ sxk

s
−→ sxks

stk+1s
−→ · · ·

strs−→ sxrs)

for some integers i, k such that r > k > i − 1 > 0, k > 1, where t1, . . . , tr ∈ P , x1, . . . , xr 6 v,
and we let σ(∆) ∈ B(e, rvs) be defined by

σ(∆) = (x0
t1−→· · ·

ti−1
−→ xi−1

x−1
i−1rxi−1

−→ rxi−1

ti−→ rxi · · ·
tk−→ rxk

s
−→ rxks

stk+1s
−→ · · ·

strs−→ rxrs).

Also in this case it follows from Proposition 6.10 that m≪(σ(∆)) = m≪(∆). We have considered
in this way all paths in B(e, svs) and we have obtained all paths in B(e, v) and all paths in
B(e, rvs) except those passing through rs.

If ∆ ∈ B(e, v), with

∆ = (x0
t1−→ x1

t2−→ · · ·
tr+1
−→ xr+1)

then we let

σ(∆) = (x0
r
−→ r

s
−→ rs

st1s−→ rx1s
st2s−→ · · ·

str+1s
−→ rxr+1s)
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and if the same path ∆ is considered in B(e, v) we let

σ(∆) = (x0
s
−→ s

srs
−→ rs

st1s−→ rx1s
st2s−→ · · ·

str+1s
−→ rxr+1s).

In the first case we have m≪(σ(∆)) = ab ·m≪s(∆) by Proposition 6.10. In the second case we
similarly have m≪(σ(∆)) = ba ·m≪s(∆) as srs≪ st1s by Proposition 6.10 used with w = e.

6.4 Homogeneous components and linear relations

Following [36] we consider a set Wn of elements in the 3-complete Coxeter group W of rank
n+ 1 generated by s1, . . . , sn+1 constructed recursively in the following way: we let W0 = {s1},
W1 = {s1s2} and, for n > 2,

Wn = {wsn+1 : w ∈Wn−1} ∪ {sn+1wsn+1 : w ∈Wn−2}.

We now consider the following space of cd-polynomials

Vn = Span{Ψ̃e,v : v ∈Wn}.

Since ℓ(v) = n+ 1 for all v ∈Wn we deduce that Vn is contained in the space of cd-polynomials
of degree bounded by n. A set of generators for Vn can also be described in the following way.
Let A0 = {1}, A1 = {c} and

An = {c · P + P ′ : P ∈ An−1} ∪ {(d− 1) · P : P ∈ An−2},

where for all P ∈ A we let P ′ def
= G′(P ). We claim that An is a spanning set for Vn and we

proceed by induction on n, the result being clear if n = 0, 1. So assume that n > 2 and let
v ∈ Wn. If v = wsn+1 for some w ∈ Wn−1 we have Ψ̃e,v = cΨ̃e,w + Ψ̃′

e,w by Corollary 6.4 and
the result follows by induction. If v = sn+1wsn+1 for some w ∈Wn−2 we have, by Theorem 6.11
and Corollary 6.5 Ψ̃e,sn+1wsn+1 = cΨ̃e,vsn+1 +Ψ′

e,vsn+1
+ (1 − d)Ψ̃e,v and the result follows again

by induction as Ψ̃e,vsn = Ψ̃e,vsn+1 by Corollary 6.4.

We observe that |An| = fn+1 and we denote its elements by Pn,1, . . . , Pn,fn+1 in the following
way. We let P0,1 = 1, P1,1 = c and

Pn,j =

{
cPn−1,j + P ′

n−1,j if 1 6 j 6 fn

(d− 1)Pn−2,j−fn if fn < j 6 fn + fn−1

The next result follows immediately from the above recursion.

Lemma 6.12. Let Pn,j =
∑

M aMM , the sum being over all monomials of degree at most n (and
of the same parity as n). If M is a monomial of degree n− 2i (i > 0) then aM (−1)i > 0.

We consider the lexicographic order ≺ on the set of cd-monomials of degree n for all n ∈ N,
where we let c ≺ d. So for example, if n = 4 we have c4 ≺ c2d ≺ cdc ≺ dc2 ≺ d2. The proof of
the following result is a simple verification, and is left to the reader.

Lemma 6.13. Let M, I be cd-monomials of the same degree such that I � M . Then the cd-
polynomial M ′ is a sum of monomials which are all � cI.

If P is a cd-polynomial with non-zero homogeneous component of degree n, we call the
minimum monomial of degree n appearing in P with non-zero coefficient the n-th initial term of
P . We denote by Mn,j the n-th initial term of Pn,j.

Lemma 6.14. For all n ∈ N we have Mn,1 ≺Mn,2 ≺ · · · ≺Mn,fn+1 .
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Proof. This follows from Lemma 6.13 and the observation that if P is a polynomial of degree n
and M is the n-th initial term of P , then cM is the n + 1-st initial term of cP and dM is the
n+ 2-nd initial term of (d− 1)P .

Lemma 6.15. Let Pn,j =
∑

M aMM , the sum being over all monomials of degree at most n (and
of the same parity as n). If M0 is a monomial of degree n − 2i, with i > 0, and aM0 6= 0 then
there exists a monomial M̃0 of degree n − 2i + 2 with aM̃0

6= 0 such that M0 is obtained from

M̃0 be deleting a letter d.

Proof. We proceed by induction on n, the cases n = 0, 1 being empty. We consider the two cases:

(i) if Pn,j = cQ+Q′ for some Q ∈ An−1 we let Q =
∑
bmm, the sum being over monomials m

of degree bounded by n− 1 and of the same parity as n− 1. The monomial M0 will appear
as a summand in cm0 + m′

0 for some m0 such that deg(m0) = n − 1 − 2i and bm0 6= 0.
By induction there exists m̃0 of degree n + 1 − 2i such that bm̃0 6= 0 and such that m0 is
obtained from m̃0 by deleting a letter d. Then it is not hard to see that in cm̃0 + m̃′

0 there
is a monomial obtained by inserting a letter d in M0. Since, by Lemma 6.12, all monomials
of the same degree appearing in Q have coefficients with the same sign, there cannot be
cancellations when expanding cQ+Q′ and therefore we necessarily have aM̃0

6= 0.

(ii) P = (d− 1)Q for some Q ∈ An−2. This is similar and simpler and is left to the reader.

We can now prove the main result of this section.

Theorem 6.16. Let k, n ∈ N. Then the homogeneous parts of degree n of the polynomials
(d− 1)kPn,j, for j ∈ [fn+1], are linearly independent.

Proof. By Lemma 6.14, the result will follow if we show that the initial term of the homogeneous
part of degree n of (d − 1)kPn,j equals the initial term Mn,j of the homogeneous part of degree
n of Pn,j .

We need the following notation: if M is a monomial of degree n we let i(M) = max{i ∈ N :
M = di ·m for some monomial m} and for all j 6 i(M) we let M (j) be the monomial obtained
from M be deleting its first j factors so M = djM (j). For example, if M = d2cd then i(M) = 2,
M (0) =M , M (1) = dcd and M (2) = cd.

Let Pn,j =
∑

M aMM and (d−1)kPn,j =
∑

M bMM . Then, for every monomialM , deg(M) 6
n+ 2k, we have

bM =

min(i(M),k)∑

j=0

(−1)k−j

(
k

j

)
aM (j) . (22)

If M has degree n we have that (−1)jaM (j) > 0 for all j > 0 by Lemma 6.12 and in particular
we have that bM 6= 0 if aM 6= 0. In particular bMn,j

6= 0. Now we have to show that if M0 is a
monomial of degree n such that bM0 6= 0 then Mn,j ≺ M0. It follows from (22) that a

M
(j)
0

6= 0

for some 0 6 j 6 min(i(M), k). Repeated applications of Lemma 6.14 imply that there exists

a monomial M̃ of degree n, with aM̃ 6= 0 such that M
(j)
0 can be obtained by deleting j factors

d from M̃ . Therefore M0 can be obtained from M̃ by moving some factors d to the left and so
M̃ ≺M0; finally, aM̃ 6= 0 implies Mn,j ≺ M̃ , completing the proof.

The following consequence of Theorem 6.16 is the main motivation for the results in this
section.
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Corollary 6.17. Let n, k ∈ N. Let aT ∈ Q, T ∈ 2n
s be such that

∑

T∈2n
s

aT b(e, v)T = 0

for all Coxeter groups W and all v ∈W such that ℓ(v) = n+2k+1. Then aT = 0 for all T ∈ 2n
s .

Proof. If P is a cd-polynomial let P (n) be the homogeneous component of degree n of P . By

Theorem 6.16 and our definitions we have that the cd-polynomials Ψ̃
(n)
e,v , as v ranges in Wn+2k+1,

span the whole space of homogeneous cd-polynomials of degree n, which has dimension fn+1.
But by definition of the complete cd-index we have

Ψ̃(n)
e,v =

∑

E∈2n

b(e, v)EµEop,

and so the result now follows since b(e, v) ∈ Bn.

6.5 Another family of complete cd-indices and a conjecture

We conclude this work by giving a recursive way to compute the complete cd-index of another
family Bruhat intervals. This result will allow us to state a general conjecture about possible
relations among all the coefficients of the complete cd-index of any Bruhat interval.

Theorem 6.18. Let (W,S) be a 3-complete Coxeter system, e 6= v ∈W and s ∈ S be such that
s 66 v. Then

Ψ̃s,svs = Ψ̃e,v · c+
∑

x∈(e,v)

Ψ̃e,x · d · Ψ̃x,v.

Proof. Consider a path ∆ ∈ B(s, svs). Then two cases occur: either ∆ is of the form ∆ = (s→
sx1 · · · ) or ∆ = (s→ x1s · · · ) for some e 6= x1 6 v. Call B1(s, svs) the family of paths of the first
kind and B2(s, svs) the family of paths of the second kind. We claim that there is a bijection
B1(s, svs)←→

⋃
x∈(e,v]B(e, x)×B(x, v). Furthermore, if we consider on paths in B1(s, svs) and

in B(e, x) the order≪ described in Lemma 6.9 and on paths in B(x, v) the lower s-conjugate≪s

of≪ we claim that if ∆ ∈ B1(s, svs) corresponds to (∆′,∆′′) ∈ B(e, x)×B(x, v) with x 6= v then
m≪(∆) = m≪(∆′) · ab ·m≪s(∆

′′) and if (∆′,∆′′) ∈ B(e, v)×B(v, v) then m≪(∆) = m≪(∆′) · a.
The bijection is defined as follows: if ∆ ∈ B1(s, svs) then it is necessarily of the form

∆ = (s
t1−→ sx1

t2−→ · · ·
ti−→ sxi

s
−→ sxis

sti+1s
−→ · · ·

strs−→ sxrs).

for some 1 6 i 6 r. Then we define ∆′ = (e
t1−→ x1

t2−→ · · ·
ti−→ xi) and ∆′′ = (xi

ti+1
−→ · · ·

tr−→ xr).
The fact that this is a bijection is clear and that the monomial m≪(∆) satisfies the stated
properties follows from Lemma 6.9 and the definition of ≪s. We deduce that

∑

∆∈B1(s,svs)

m≪(∆) =
∑

∆′∈B(e,v)

m≪(∆′) · a+
∑

x∈(e,v)

∑

∆′∈B(e,x)
∆′′∈B(x,v)

m≪(∆′) · ab ·m≪s(∆
′′)

= Ψ̃e,v · a+
∑

x∈(e,v)

Ψ̃e,x · ab · Ψ̃x,v.

We also claim that there is a bijection B2(s, svs)←→
⋃

x∈(e,v]B(e, x)×B(x, v) such that if ∆

corresponds to (∆′,∆′′) ∈ B(e, x) ×B(x, v) with x 6= v then m≪(∆) = m≪s(∆
′) · ba ·m≪s(∆

′′)
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and if (∆′,∆′′) ∈ B(e, v) × B(v, v) then m≪(∆) = m≪s(∆
′) · b. In this case, if ∆ ∈ B2(s, svs),

then ∆ is of the form

∆ = (s
st1s−→ x1s

st2s−→ · · ·
stis−→ xis

sx−1
i sxis
−→ sxis

sti+1s
−→ · · ·

strs−→ sxrs),

and we define ∆′ = (e
t1−→ x1

t2−→ · · ·
ti−→ xi) and ∆′′ = (xi

ti+1
−→ · · ·

tr−→ xr). It follows that
∑

∆∈B2(s,svs)

m≪(∆) = Ψ̃e,v · b+
∑

x∈(e,v)

Ψ̃e,x · ba · Ψ̃x,v,

and the result follows.

If Wn is the subset of elements of the 3-complete Coxeter group constructed in the previous
subsection, this result allows us to easily compute all the complete cd-indices of the Bruhat
intervals [sn+1, sn+1vsn+1] as v ranges in Wn−1. This has allowed us to verify the following
conjecture for n 6 17.

Conjecture 6.19. For all n > 0 the complete cd-indices of all Bruhat intervals of rank n + 1
span the whole space of cd-polynomials of degree bounded by n whose nonzero homogeneous
components have degree of the same parity as n.

This conjecture implies the following one, which in turn would imply that the formula obtained
in Theorem 5.1 cannot be “linearly” simplified, even if we content ourselves with a formula that
only holds for all Bruhat intervals of a fixed rank.

Conjecture 6.20. Let n > 0. Then there are no nontrivial relations of the form
∑

i∈{n,n−2,...}

∑

T∈2i
s

aT b(u, v)T = 0,

valid for all Coxeter groups W and all u, v ∈W such that ℓ(v)− ℓ(u) = n.
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Proc. Sympos. Pure Math. 34, Amer. Math. Soc., Providence, RI, 1980, pp. 185-203.

33 K. Luoto, S. Mykytiuk, S. van Willigenburg, An introduction to quasisymmetric Schur functions. Hopf

algebras, quasisymmetric functions, and Young composition tableaux, Springer Briefs in Mathematics,
Springer, New York, 2013.

35



Peak algebras and Kazhdan-Lusztig polynomials

34 C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent
algebra, J. Algebra, 177 (1995), 967-982.
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