Energy harvesting is generally seen to be the key to power cyber-physical systems in a low-cost, long term, efficient manner. However, harvesting has traditionally been coupled with large energy storage devices to mitigate the effects of the source’s variability. The emerging class of transiently powered systems avoids this issue by performing computation only as a function of the harvested energy, minimizing the obtrusive and expensive storage element. In this work, we present an efficient Energy Management Unit (EMU) to supply generic loads when the average harvested power is much smaller than required for sustained system operation. By building up charge to a pre-defined energy level, the EMU can generate short energy bursts predictably, even under variable harvesting conditions. Furthermore, we propose a dynamic energy burst scaling (DEBS) technique to adjust these bursts to the load’s requirements. Using a simple interface, the load can dynamically configure the EMU to supply small bursts of energy at its optimal power point, independent from the harvester’s operating point. Extensive theoretical and experimental data demonstrate the high energy efficiency of our approach, reaching up to 73.6% even when harvesting only 110 μW to supply a load of 3.89mW.

Gomez, A., Sigrist, L., Magno, M., Benini, L., Thiele, L. (2016). Dynamic Energy Burst Scaling for Transiently Powered Systems. IEEE [10.3850/9783981537079_0403].

Dynamic Energy Burst Scaling for Transiently Powered Systems

GOMEZ, ANDRES;MAGNO, MICHELE;BENINI, LUCA;
2016

Abstract

Energy harvesting is generally seen to be the key to power cyber-physical systems in a low-cost, long term, efficient manner. However, harvesting has traditionally been coupled with large energy storage devices to mitigate the effects of the source’s variability. The emerging class of transiently powered systems avoids this issue by performing computation only as a function of the harvested energy, minimizing the obtrusive and expensive storage element. In this work, we present an efficient Energy Management Unit (EMU) to supply generic loads when the average harvested power is much smaller than required for sustained system operation. By building up charge to a pre-defined energy level, the EMU can generate short energy bursts predictably, even under variable harvesting conditions. Furthermore, we propose a dynamic energy burst scaling (DEBS) technique to adjust these bursts to the load’s requirements. Using a simple interface, the load can dynamically configure the EMU to supply small bursts of energy at its optimal power point, independent from the harvester’s operating point. Extensive theoretical and experimental data demonstrate the high energy efficiency of our approach, reaching up to 73.6% even when harvesting only 110 μW to supply a load of 3.89mW.
2016
Design, Automation & Test in Europe Conference & Exhibition (DATE)
349
354
Gomez, A., Sigrist, L., Magno, M., Benini, L., Thiele, L. (2016). Dynamic Energy Burst Scaling for Transiently Powered Systems. IEEE [10.3850/9783981537079_0403].
Gomez, Andres; Sigrist, Lukas; Magno, Michele; Benini, Luca; Thiele, Lothar
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/587291
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 39
social impact