This paper is concerned with the energy shaping of 1D linear boundary controlled port-Hamiltonian systems. The energy-Casimir method is first proposed to deal with power preserving systems. It is shown how to use finite dimensional dynamic boundary controllers and closed-loop structural invariants to partially shape the closed-loop energy function and how such controller finally reduces to a state feedback. When dissipative port-Hamiltonian systems are considered, the Casimir functions do not exist anymore (dissipation obstacle) and the immersion (via a dynamic controller) / reduction (through invariants) method cannot be applied. The main contribution of this paper is to show how to use the same ideas and state functions to shape the closed-loop energy function of dissipative systems through direct state feedback i.e. without relying on a dynamic controller and a reduction step. In both cases the existence of solution and the asymptotic stability (by additional damping injection) of the closed-loop system are proven. The general theory and achievable closed-loop performances are illustrated with the help of a concluding example, the boundary stabilisation of a longitudinal beam vibrations.

On the Synthesis of Boundary Control Laws for Distributed Port Hamiltonian Systems

MACCHELLI, ALESSANDRO;
2017

Abstract

This paper is concerned with the energy shaping of 1D linear boundary controlled port-Hamiltonian systems. The energy-Casimir method is first proposed to deal with power preserving systems. It is shown how to use finite dimensional dynamic boundary controllers and closed-loop structural invariants to partially shape the closed-loop energy function and how such controller finally reduces to a state feedback. When dissipative port-Hamiltonian systems are considered, the Casimir functions do not exist anymore (dissipation obstacle) and the immersion (via a dynamic controller) / reduction (through invariants) method cannot be applied. The main contribution of this paper is to show how to use the same ideas and state functions to shape the closed-loop energy function of dissipative systems through direct state feedback i.e. without relying on a dynamic controller and a reduction step. In both cases the existence of solution and the asymptotic stability (by additional damping injection) of the closed-loop system are proven. The general theory and achievable closed-loop performances are illustrated with the help of a concluding example, the boundary stabilisation of a longitudinal beam vibrations.
2017
Macchelli, Alessandro; Le Gorrec, Yann; Ramirez, Hector; Zwart, Hans
File in questo prodotto:
File Dimensione Formato  
tac14-cntr_syn_dph_FINAL_disclaimer.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/583655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 44
social impact