A Carnot group is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study the notions of intrinsic graphs and of intrinsic Lipschitz graphs within Carnot groups. Intrinsic Lipschitz graphs are the natural local analogue inside Carnot groups of Lipschitz submanifolds in Euclidean spaces, where “natural” emphasizes that the notion depends only on the structure of the algebra. Intrinsic Lipschitz graphs unify different alternative approaches through Lipschitz parameterizations or level sets. We provide both geometric and analytic characterizations and a clarifying relation between these graphs and Rumin’s complex of differential forms.

Franchi, B., Serapioni, R.P. (2016). Intrinsic Lipschitz Graphs Within Carnot Groups. THE JOURNAL OF GEOMETRIC ANALYSIS, 26(3), 1946-1994 [10.1007/s12220-015-9615-5].

Intrinsic Lipschitz Graphs Within Carnot Groups

FRANCHI, BRUNO;
2016

Abstract

A Carnot group is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study the notions of intrinsic graphs and of intrinsic Lipschitz graphs within Carnot groups. Intrinsic Lipschitz graphs are the natural local analogue inside Carnot groups of Lipschitz submanifolds in Euclidean spaces, where “natural” emphasizes that the notion depends only on the structure of the algebra. Intrinsic Lipschitz graphs unify different alternative approaches through Lipschitz parameterizations or level sets. We provide both geometric and analytic characterizations and a clarifying relation between these graphs and Rumin’s complex of differential forms.
2016
Franchi, B., Serapioni, R.P. (2016). Intrinsic Lipschitz Graphs Within Carnot Groups. THE JOURNAL OF GEOMETRIC ANALYSIS, 26(3), 1946-1994 [10.1007/s12220-015-9615-5].
Franchi, Bruno; Serapioni, Raul Paolo
File in questo prodotto:
File Dimensione Formato  
FS2_revised_2.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/553689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 51
social impact