A Carnot group is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study the notions of intrinsic graphs and of intrinsic Lipschitz graphs within Carnot groups. Intrinsic Lipschitz graphs are the natural local analogue inside Carnot groups of Lipschitz submanifolds in Euclidean spaces, where “natural” emphasizes that the notion depends only on the structure of the algebra. Intrinsic Lipschitz graphs unify different alternative approaches through Lipschitz parameterizations or level sets. We provide both geometric and analytic characterizations and a clarifying relation between these graphs and Rumin’s complex of differential forms.
Franchi, B., Serapioni, R.P. (2016). Intrinsic Lipschitz Graphs Within Carnot Groups. THE JOURNAL OF GEOMETRIC ANALYSIS, 26(3), 1946-1994 [10.1007/s12220-015-9615-5].
Intrinsic Lipschitz Graphs Within Carnot Groups
FRANCHI, BRUNO;
2016
Abstract
A Carnot group is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study the notions of intrinsic graphs and of intrinsic Lipschitz graphs within Carnot groups. Intrinsic Lipschitz graphs are the natural local analogue inside Carnot groups of Lipschitz submanifolds in Euclidean spaces, where “natural” emphasizes that the notion depends only on the structure of the algebra. Intrinsic Lipschitz graphs unify different alternative approaches through Lipschitz parameterizations or level sets. We provide both geometric and analytic characterizations and a clarifying relation between these graphs and Rumin’s complex of differential forms.File | Dimensione | Formato | |
---|---|---|---|
FS2_revised_2.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.