The brightest cluster galaxy (BCG) in the majority of relaxed, cool core galaxy clusters is radio loud, showing non-thermal radio jets and lobes ejected by the central active galactic nucleus (AGN). Such relativistic plasma has been unambiguously shown to interact with the surrounding thermal intra-cluster medium (ICM) thanks to spectacular images where the lobe radio emission is observed to fill the cavities in the X-ray-emitting gas. This `radio-mode AGN feedback' phenomenon, which is thought to quench cooling flows, is widespread and is critical to understand the physics of the inner regions of galaxy clusters and the properties of the central BCG. At the same time, mechanically-powerful AGN are likely to drive turbulence in the central ICM which may contribute to gas heating and also play a role for the origin of non-thermal emission on cluster-scales. Diffuse non-thermal emission has been observed in a number of cool core clusters in the form of a radio mini-halo surrounding the radio-loud BCG on scales comparable to that of the cooling region. This contribution outlines the main points covered by the talk on these topics. In particular, after summarizing the cooling flow regulation by AGN heating and the non-thermal emission from cool core clusters, we present a recent study of the largest collection of known mini-halo clusters (~ 20 objects) which investigated the scenario of a common origin of radio mini-halos and gas heating. We further discuss the prospects offered by future radio surveys with the Square Kilometre Array (SKA) for building large (>> 100 objects), unbiased mini-halo samples while probing at the same time the presence of radio-AGN feedback in the host clusters.

Gitti, M. (2016). Radio mini-halos and AGN heating in cool core clusters of galaxies. POS PROCEEDINGS OF SCIENCE, 267 - The many facets of extragalactic radio surveys: towards new scientific challenges (EXTRA-RADSUR2015) - SESSION VII: GALAXY CLUSTERS, 1-8 [10.22323/1.267.0043].

Radio mini-halos and AGN heating in cool core clusters of galaxies

GITTI, MYRIAM
2016

Abstract

The brightest cluster galaxy (BCG) in the majority of relaxed, cool core galaxy clusters is radio loud, showing non-thermal radio jets and lobes ejected by the central active galactic nucleus (AGN). Such relativistic plasma has been unambiguously shown to interact with the surrounding thermal intra-cluster medium (ICM) thanks to spectacular images where the lobe radio emission is observed to fill the cavities in the X-ray-emitting gas. This `radio-mode AGN feedback' phenomenon, which is thought to quench cooling flows, is widespread and is critical to understand the physics of the inner regions of galaxy clusters and the properties of the central BCG. At the same time, mechanically-powerful AGN are likely to drive turbulence in the central ICM which may contribute to gas heating and also play a role for the origin of non-thermal emission on cluster-scales. Diffuse non-thermal emission has been observed in a number of cool core clusters in the form of a radio mini-halo surrounding the radio-loud BCG on scales comparable to that of the cooling region. This contribution outlines the main points covered by the talk on these topics. In particular, after summarizing the cooling flow regulation by AGN heating and the non-thermal emission from cool core clusters, we present a recent study of the largest collection of known mini-halo clusters (~ 20 objects) which investigated the scenario of a common origin of radio mini-halos and gas heating. We further discuss the prospects offered by future radio surveys with the Square Kilometre Array (SKA) for building large (>> 100 objects), unbiased mini-halo samples while probing at the same time the presence of radio-AGN feedback in the host clusters.
2016
Gitti, M. (2016). Radio mini-halos and AGN heating in cool core clusters of galaxies. POS PROCEEDINGS OF SCIENCE, 267 - The many facets of extragalactic radio surveys: towards new scientific challenges (EXTRA-RADSUR2015) - SESSION VII: GALAXY CLUSTERS, 1-8 [10.22323/1.267.0043].
Gitti, Myriam
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/546383
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact