In this Letter, we present a study of the central regions of cool-core clusters hosting radio mini-halos, which are diffuse synchrotron sources extended on cluster-scales surrounding the radio-loud brightest cluster galaxy. We aim to investigate the interplay between the thermal and non-thermal components in the intracluster medium in order to get more insights into these radio sources, whose nature is still unclear. It has recently been proposed that turbulence plays a role for heating the gas in cool cores. By assuming that mini-halos are powered by the same turbulence, we expect that the integrated radio luminosity of mini-halos, νPν, depends on the cooling flow power, PCF, which in turn constrains the energy available for the non-thermal components and emission in the cool-core region. We carried out a homogeneous re-analysis of X-ray Chandra data of the largest sample of cool-core clusters hosting radio mini-halos currently available (˜20 objects), finding a quasi-linear correlation, ν P_{ν } ∝ P_CF^{0.8}. We show that the scenario of a common origin of radio mini-halos and gas heating in cool-core clusters is energetically viable, provided that mini-halos trace regions where the magnetic field strength is B ≫ 0.5 μG.

Bravi, L., Gitti, M., Brunetti, G. (2016). Do radio mini-halos and gas heating in cool-core clusters have a common origin?. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. LETTERS, 455(1), L41-L45 [10.1093/mnrasl/slv137].

Do radio mini-halos and gas heating in cool-core clusters have a common origin?

GITTI, MYRIAM;
2016

Abstract

In this Letter, we present a study of the central regions of cool-core clusters hosting radio mini-halos, which are diffuse synchrotron sources extended on cluster-scales surrounding the radio-loud brightest cluster galaxy. We aim to investigate the interplay between the thermal and non-thermal components in the intracluster medium in order to get more insights into these radio sources, whose nature is still unclear. It has recently been proposed that turbulence plays a role for heating the gas in cool cores. By assuming that mini-halos are powered by the same turbulence, we expect that the integrated radio luminosity of mini-halos, νPν, depends on the cooling flow power, PCF, which in turn constrains the energy available for the non-thermal components and emission in the cool-core region. We carried out a homogeneous re-analysis of X-ray Chandra data of the largest sample of cool-core clusters hosting radio mini-halos currently available (˜20 objects), finding a quasi-linear correlation, ν P_{ν } ∝ P_CF^{0.8}. We show that the scenario of a common origin of radio mini-halos and gas heating in cool-core clusters is energetically viable, provided that mini-halos trace regions where the magnetic field strength is B ≫ 0.5 μG.
2016
Bravi, L., Gitti, M., Brunetti, G. (2016). Do radio mini-halos and gas heating in cool-core clusters have a common origin?. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. LETTERS, 455(1), L41-L45 [10.1093/mnrasl/slv137].
Bravi, L.; Gitti, M.; Brunetti, G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/546375
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact