Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Supply voltage (V<inf>DD</inf>) scaling offers a means to greatly reduce power in serial link transceivers. Ideally, power efficiency at a given data rate can be improved by reducing V<inf>DD</inf> while increasing the number of multiplexed circuits operating in parallel at lower clock frequencies [1]. Though increasing the amount of parallelism is desirable to scale V<inf>DD</inf>, in practice, it is limited by two main factors. First, increased sensitivity to device variations (threshold voltage/dimension mismatch) at lower V<inf>DD</inf> makes it extremely challenging to generate equally spaced multi-phase clocks needed in multiplexed transmitter and receiver. Phase calibration methods can correct phase-spacing errors [2,3], but their effectiveness at lower V<inf>DD</inf> is limited as the calibration circuits themselves become sensitive to device variations. Second, as oscillator output swing reduces with V<inf>DD</inf>, its phase noise degrades, making low-noise clock generation difficult to implement with low power dissipation. Phase noise can be suppressed by embedding the oscillator in a wide bandwidth analog phase-locked loop (APLL), but conventional charge-pump-based APLLs are difficult to design at low supply voltages (V<inf>DD</inf> <0.5V). Digital PLLs (DPLLs) can operate at low V<inf>DD</inf>, but they suffer from conflicting noise bandwidth tradeoffs, which prevent increasing the bandwidth to suppress oscillator phase noise adequately. In this paper, we present a phase-calibration method that enables the operation of a source-synchronous transceiver down to V<inf>DD</inf> of 0.45V. The energy efficiency and data-rate of the prototype transceiver scale from 0.29 to 0.58pJ/b and 1.3Gb/s to 6Gb/s, respectively, as V<inf>DD</inf> is varied from 0.45 to 0.7V.
Choi, W., Shu, G., Talegaonkar, M., Liu, Y., Wei, D.a., Benini, L., et al. (2015). A 0.45-to-0.7V 1-to-6Gb/S 0.29-to-0.58pJ/b source-synchronous transceiver using automatic phase calibration in 65nm CMOS. Institute of Electrical and Electronics Engineers Inc. [10.1109/ISSCC.2015.7062928].
A 0.45-to-0.7V 1-to-6Gb/S 0.29-to-0.58pJ/b source-synchronous transceiver using automatic phase calibration in 65nm CMOS
Supply voltage (VDD) scaling offers a means to greatly reduce power in serial link transceivers. Ideally, power efficiency at a given data rate can be improved by reducing VDD while increasing the number of multiplexed circuits operating in parallel at lower clock frequencies [1]. Though increasing the amount of parallelism is desirable to scale VDD, in practice, it is limited by two main factors. First, increased sensitivity to device variations (threshold voltage/dimension mismatch) at lower VDD makes it extremely challenging to generate equally spaced multi-phase clocks needed in multiplexed transmitter and receiver. Phase calibration methods can correct phase-spacing errors [2,3], but their effectiveness at lower VDD is limited as the calibration circuits themselves become sensitive to device variations. Second, as oscillator output swing reduces with VDD, its phase noise degrades, making low-noise clock generation difficult to implement with low power dissipation. Phase noise can be suppressed by embedding the oscillator in a wide bandwidth analog phase-locked loop (APLL), but conventional charge-pump-based APLLs are difficult to design at low supply voltages (VDD <0.5V). Digital PLLs (DPLLs) can operate at low VDD, but they suffer from conflicting noise bandwidth tradeoffs, which prevent increasing the bandwidth to suppress oscillator phase noise adequately. In this paper, we present a phase-calibration method that enables the operation of a source-synchronous transceiver down to VDD of 0.45V. The energy efficiency and data-rate of the prototype transceiver scale from 0.29 to 0.58pJ/b and 1.3Gb/s to 6Gb/s, respectively, as VDD is varied from 0.45 to 0.7V.
Choi, W., Shu, G., Talegaonkar, M., Liu, Y., Wei, D.a., Benini, L., et al. (2015). A 0.45-to-0.7V 1-to-6Gb/S 0.29-to-0.58pJ/b source-synchronous transceiver using automatic phase calibration in 65nm CMOS. Institute of Electrical and Electronics Engineers Inc. [10.1109/ISSCC.2015.7062928].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/545192
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
25
14
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.