We describe the preparation and properties of the first example of a synergic nanoantioxidant, obtained by different functionalizations of the external surface and the inner lumen of halloysite nanotubes (HNTs). Trolox, a mimic of natural α-tocopherol, was selectively grafted on the HNT external surface; while quercetin, a natural polyphenolic antioxidant, was loaded into the inner lumen to afford a bi-functional nanoantioxidant, HNT–Trolox/Que, which was investigated for its reactivity with transient peroxyl radicals and a persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH˙) radical in comparison with the corresponding mono-functional analogues HNT–Trolox and HNT/Que. Both HNT–Trolox and HNT/Que showed good antioxidant performance in the inhibited autoxidation of organic substrates; however HNT–Trolox/Que protection by reaction with peroxyl radicals was 35% higher in acetonitrile and 65% in chlorobenzene, as compared to the expected performance based on the sum of contributions of NHT-Trolox and NHT/Que. Similar enhancement was observed also in the trapping of DPPH˙ radicals. Synergism between the distinct antioxidant functions was based on the rapid reaction of externally exposed Trolox (rate constant with peroxyl radicals was 1.1 × 106 M−1 s−1 and 9 × 104 M−1 s−1 respectively in chlorobenzene and acetonitrile, at 30 °C), followed by its regeneration by quercetin released from the HNT lumen. The advantages of this novel nanoantioxidant are discussed.

Massaro, M., Riela, S., Guernelli, S., Parisi, F., Lazzara, G., Baschieri, A., et al. (2016). A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. JOURNAL OF MATERIALS CHEMISTRY. B, 4, 2229-2241 [10.1039/c6tb00126b].

A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin

GUERNELLI, SUSANNA;BASCHIERI, ANDREA;VALGIMIGLI, LUCA;AMORATI, RICCARDO
2016

Abstract

We describe the preparation and properties of the first example of a synergic nanoantioxidant, obtained by different functionalizations of the external surface and the inner lumen of halloysite nanotubes (HNTs). Trolox, a mimic of natural α-tocopherol, was selectively grafted on the HNT external surface; while quercetin, a natural polyphenolic antioxidant, was loaded into the inner lumen to afford a bi-functional nanoantioxidant, HNT–Trolox/Que, which was investigated for its reactivity with transient peroxyl radicals and a persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH˙) radical in comparison with the corresponding mono-functional analogues HNT–Trolox and HNT/Que. Both HNT–Trolox and HNT/Que showed good antioxidant performance in the inhibited autoxidation of organic substrates; however HNT–Trolox/Que protection by reaction with peroxyl radicals was 35% higher in acetonitrile and 65% in chlorobenzene, as compared to the expected performance based on the sum of contributions of NHT-Trolox and NHT/Que. Similar enhancement was observed also in the trapping of DPPH˙ radicals. Synergism between the distinct antioxidant functions was based on the rapid reaction of externally exposed Trolox (rate constant with peroxyl radicals was 1.1 × 106 M−1 s−1 and 9 × 104 M−1 s−1 respectively in chlorobenzene and acetonitrile, at 30 °C), followed by its regeneration by quercetin released from the HNT lumen. The advantages of this novel nanoantioxidant are discussed.
2016
Massaro, M., Riela, S., Guernelli, S., Parisi, F., Lazzara, G., Baschieri, A., et al. (2016). A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. JOURNAL OF MATERIALS CHEMISTRY. B, 4, 2229-2241 [10.1039/c6tb00126b].
Massaro, Marina; Riela, Serena; Guernelli, Susanna; Parisi, Filippo; Lazzara, Giuseppe; Baschieri, Andrea; Valgimigli, Luca; Amorati, Riccardo...espandi
File in questo prodotto:
File Dimensione Formato  
A synergic nanoantioxidant.pdf

Open Access dal 09/03/2017

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri
c6tb00126b1.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/541506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 66
social impact