Technology scaling enables the design of low cost biosignal processing chips suited for emerging wireless body-area sensing applications. Energy consumption severely limits such applications and memories are becoming the energy bottleneck to achieve ultra-low-power operation. When aggressive voltage scaling is used, memory operation becomes unreliable due to the lack of sufficient Static Noise Margin. This paper introduces an approximate biosignal Compressed Sensing approach. We propose a digital architecture featuring a hybrid memory (6T-SRAM/SCMEM cells) designed to control perturbations on specific data structures. Combined with a statistically robust reconstruction algorithm, the system tolerates memory errors and achieves significant energy savings with low area overhead.

Bortolotti, D., Mamaghanian, H., Bartolini, A., Ashouei, M., Stuijt, J., Atienza, D., et al. (2014). Approximate compressed sensing: Ultra-low power biosignal processing via aggressive voltage scaling on a hybrid memory multi-core processor. Institute of Electrical and Electronics Engineers Inc. [10.1145/2627369.2627629].

Approximate compressed sensing: Ultra-low power biosignal processing via aggressive voltage scaling on a hybrid memory multi-core processor

BORTOLOTTI, DANIELE;BARTOLINI, ANDREA;ATIENZA, DAVID;BENINI, LUCA
2014

Abstract

Technology scaling enables the design of low cost biosignal processing chips suited for emerging wireless body-area sensing applications. Energy consumption severely limits such applications and memories are becoming the energy bottleneck to achieve ultra-low-power operation. When aggressive voltage scaling is used, memory operation becomes unreliable due to the lack of sufficient Static Noise Margin. This paper introduces an approximate biosignal Compressed Sensing approach. We propose a digital architecture featuring a hybrid memory (6T-SRAM/SCMEM cells) designed to control perturbations on specific data structures. Combined with a statistically robust reconstruction algorithm, the system tolerates memory errors and achieves significant energy savings with low area overhead.
2014
Proceedings of the International Symposium on Low Power Electronics and Design
45
50
Bortolotti, D., Mamaghanian, H., Bartolini, A., Ashouei, M., Stuijt, J., Atienza, D., et al. (2014). Approximate compressed sensing: Ultra-low power biosignal processing via aggressive voltage scaling on a hybrid memory multi-core processor. Institute of Electrical and Electronics Engineers Inc. [10.1145/2627369.2627629].
Bortolotti, Daniele; Mamaghanian, Hossein; Bartolini, Andrea; Ashouei, Maryam; Stuijt, Jan; Atienza, David; Vandergheynst, Pierre; Benini, Luca...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/525397
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 21
social impact