Manufacturing and environmental variability lead to timing errors in computing systems that are typically corrected by error detection and correction mechanisms at the circuit level. The cost and speed of recovery can be improved by memoization-based optimization methods that exploit spatial or temporal parallelisms in suitable computing fabrics such as general-purpose graphics processing units (GPGPUs). We propose here a temporal memoization technique for use in floating-point units (FPUs) in GPGPUs that uses value locality inside data-parallel programs. The technique recalls (memorizes) the context of error-free execution of an instruction on a FPU. To enable scalable and independent recovery, a single-cycle lookup table (LUT) is tightly coupled to every FPU to maintain contexts of recent error-free executions. The LUT reuses these memorized contexts to exactly, or approximately, correct errant FP instructions based on application needs. In real-world applications, the temporal memoization technique achieves an average energy saving of 8%-28% for a wide range of timing error rates (0%-4%) and outperforms recent advances in resilient architectures. This technique also enhances robustness in the voltage overscaling regime and achieves relative average energy saving of 66 % with 11% voltage

Temporal memoization for energy-efficient timing error recovery in GPGPUs / Rahimi, Abbas; Benini, Luca; Gupta, Rajesh K.. - STAMPA. - (2014), pp. 6800314.1-6800314.6. (Intervento presentato al convegno 17th Design, Automation and Test in Europe, DATE 2014 tenutosi a Dresden, deu nel 2014) [10.7873/DATE2014.113].

Temporal memoization for energy-efficient timing error recovery in GPGPUs

BENINI, LUCA;
2014

Abstract

Manufacturing and environmental variability lead to timing errors in computing systems that are typically corrected by error detection and correction mechanisms at the circuit level. The cost and speed of recovery can be improved by memoization-based optimization methods that exploit spatial or temporal parallelisms in suitable computing fabrics such as general-purpose graphics processing units (GPGPUs). We propose here a temporal memoization technique for use in floating-point units (FPUs) in GPGPUs that uses value locality inside data-parallel programs. The technique recalls (memorizes) the context of error-free execution of an instruction on a FPU. To enable scalable and independent recovery, a single-cycle lookup table (LUT) is tightly coupled to every FPU to maintain contexts of recent error-free executions. The LUT reuses these memorized contexts to exactly, or approximately, correct errant FP instructions based on application needs. In real-world applications, the temporal memoization technique achieves an average energy saving of 8%-28% for a wide range of timing error rates (0%-4%) and outperforms recent advances in resilient architectures. This technique also enhances robustness in the voltage overscaling regime and achieves relative average energy saving of 66 % with 11% voltage
2014
Proceedings -Design, Automation and Test in Europe, DATE
1
6
Temporal memoization for energy-efficient timing error recovery in GPGPUs / Rahimi, Abbas; Benini, Luca; Gupta, Rajesh K.. - STAMPA. - (2014), pp. 6800314.1-6800314.6. (Intervento presentato al convegno 17th Design, Automation and Test in Europe, DATE 2014 tenutosi a Dresden, deu nel 2014) [10.7873/DATE2014.113].
Rahimi, Abbas; Benini, Luca; Gupta, Rajesh K.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/525116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 3
social impact