MARK-AGE aims at the identification of biomarkers of human aging capable of discriminating between the chronological age and the effective functional status of the organism. To achieve this, given the structure of the collected data, a proper statistical analysis has to be performed, as the structure of the data are non trivial and the number of features under study is near to the number of subjects used, requiring special care to avoid overfitting. Here we described some of the possible strategies suitable for this analysis. We also include a description of the main techniques used, to explain and justify the selected strategies. Among other possibilities, we suggest to model and analyze the data with a three step strategy

Giampieri, E., Remondini, D., Bacalini, M.G., Garagnani, P., Pirazzini, C., Yani, S.L., et al. (2015). Statistical strategies and stochastic predictive models for the MARK-AGE data. MECHANISMS OF AGEING AND DEVELOPMENT, 151, 45-53 [10.1016/j.mad.2015.07.001].

Statistical strategies and stochastic predictive models for the MARK-AGE data

GIAMPIERI, ENRICO;REMONDINI, DANIEL;BACALINI, MARIA GIULIA;GARAGNANI, PAOLO;PIRAZZINI, CHIARA;GIULIANI, CRISTINA;MENICHETTI, GIULIA;ZIRONI, ISABELLA;SALA, CLAUDIA;CAPRI, MIRIAM;FRANCESCHI, CLAUDIO;CASTELLANI, GASTONE
2015

Abstract

MARK-AGE aims at the identification of biomarkers of human aging capable of discriminating between the chronological age and the effective functional status of the organism. To achieve this, given the structure of the collected data, a proper statistical analysis has to be performed, as the structure of the data are non trivial and the number of features under study is near to the number of subjects used, requiring special care to avoid overfitting. Here we described some of the possible strategies suitable for this analysis. We also include a description of the main techniques used, to explain and justify the selected strategies. Among other possibilities, we suggest to model and analyze the data with a three step strategy
2015
Giampieri, E., Remondini, D., Bacalini, M.G., Garagnani, P., Pirazzini, C., Yani, S.L., et al. (2015). Statistical strategies and stochastic predictive models for the MARK-AGE data. MECHANISMS OF AGEING AND DEVELOPMENT, 151, 45-53 [10.1016/j.mad.2015.07.001].
Giampieri, Enrico; Remondini, Daniel; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara; Yani, Stella Lukas; Giuliani, Cristina; Menichetti,...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/521360
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact