We introduce a novel approach to cultural heritage experience: by means of ego-vision embedded devices we develop a system, which offers a more natural and entertaining way of accessing museum knowledge. Our method is based on distributed self-gesture and artwork recognition, and does not need fixed cameras nor radio-frequency identifications sensors. We propose the use of dense trajectories sampled around the hand region to perform self-gesture recognition, understanding the way a user naturally interacts with an artwork, and demonstrate that our approach can benefit from distributed training. We test our algorithms on publicly available data sets and we extend our experiments to both virtual and real museum scenarios, where our method shows robustness when challenged with real-world data. Furthermore, we run an extensive performance analysis on our ARM-based wearable device.

Baraldi, L., Paci, F., Serra, G., Benini, L., Cucchiara, R. (2015). Gesture Recognition Using Wearable Vision Sensors to Enhance Visitors' Museum Experiences. IEEE SENSORS JOURNAL, 15(5), 2705-2714 [10.1109/JSEN.2015.2411994].

Gesture Recognition Using Wearable Vision Sensors to Enhance Visitors' Museum Experiences

PACI, FRANCESCO;BENINI, LUCA;
2015

Abstract

We introduce a novel approach to cultural heritage experience: by means of ego-vision embedded devices we develop a system, which offers a more natural and entertaining way of accessing museum knowledge. Our method is based on distributed self-gesture and artwork recognition, and does not need fixed cameras nor radio-frequency identifications sensors. We propose the use of dense trajectories sampled around the hand region to perform self-gesture recognition, understanding the way a user naturally interacts with an artwork, and demonstrate that our approach can benefit from distributed training. We test our algorithms on publicly available data sets and we extend our experiments to both virtual and real museum scenarios, where our method shows robustness when challenged with real-world data. Furthermore, we run an extensive performance analysis on our ARM-based wearable device.
2015
Baraldi, L., Paci, F., Serra, G., Benini, L., Cucchiara, R. (2015). Gesture Recognition Using Wearable Vision Sensors to Enhance Visitors' Museum Experiences. IEEE SENSORS JOURNAL, 15(5), 2705-2714 [10.1109/JSEN.2015.2411994].
Baraldi, Lorenzo; Paci, Francesco; Serra, Giuseppe; Benini, Luca; Cucchiara, Rita
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/517361
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 35
social impact