In smart-cities, computer vision has the potential to dramatically improve the quality of life of people suffering of visual impairments. In this field, we have been working on a wearable mobility aid aimed at detecting in real-time obstacles in front of a visually impaired. Our approach relies on a custom RGBD camera, with FPGA on-board processing, worn as traditional eyeglasses and effective point-cloud processing implemented on a compact and lightweight embedded computer. This latter device also provides feedback to the user by means of an haptic interface as well as audio messages. In this paper we address crosswalk recognition that, as pointed out by several visually impaired users involved in the evaluation of our system, is a crucial requirement in the design of an effective mobility aid. Specifically, we propose a reliable methodology to detect and categorize crosswalks by leveraging on point-cloud processing and deep-learning techniques. The experimental results reported, on 10000+ frames, confirm that the proposed approach is invariant to head/camera pose and extremely effective even when dealing with large occlusions typically found in urban environments.

Poggi, M., Nanni, L., Mattoccia, S. (2015). Crosswalk Recognition Through Point-Cloud Processing and Deep-Learning Suited to a Wearable Mobility Aid for the Visually Impaired. Springer [10.1007/978-3-319-23222-5_35].

Crosswalk Recognition Through Point-Cloud Processing and Deep-Learning Suited to a Wearable Mobility Aid for the Visually Impaired

Poggi, Matteo;MATTOCCIA, STEFANO
2015

Abstract

In smart-cities, computer vision has the potential to dramatically improve the quality of life of people suffering of visual impairments. In this field, we have been working on a wearable mobility aid aimed at detecting in real-time obstacles in front of a visually impaired. Our approach relies on a custom RGBD camera, with FPGA on-board processing, worn as traditional eyeglasses and effective point-cloud processing implemented on a compact and lightweight embedded computer. This latter device also provides feedback to the user by means of an haptic interface as well as audio messages. In this paper we address crosswalk recognition that, as pointed out by several visually impaired users involved in the evaluation of our system, is a crucial requirement in the design of an effective mobility aid. Specifically, we propose a reliable methodology to detect and categorize crosswalks by leveraging on point-cloud processing and deep-learning techniques. The experimental results reported, on 10000+ frames, confirm that the proposed approach is invariant to head/camera pose and extremely effective even when dealing with large occlusions typically found in urban environments.
2015
New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops Volume 9281 of the series Lecture Notes in Computer Science
282
289
Poggi, M., Nanni, L., Mattoccia, S. (2015). Crosswalk Recognition Through Point-Cloud Processing and Deep-Learning Suited to a Wearable Mobility Aid for the Visually Impaired. Springer [10.1007/978-3-319-23222-5_35].
Poggi, Matteo; Nanni, Luca; Mattoccia, Stefano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/516235
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact