Multi-Processor System-On-Chip (MPSoC) can provide the performance levels required by high-end embedded applications. However, they do so at the price of an increasing power density, which may lead to thermal runaway if coupled with low-cost packaging and cooling. Hence, mechanisms to efficiently evaluate the effectiveness of advanced thermal-aware operating-system (OS) strategies (e.g. task migration) onto the available MPSoC hardware are needed. In this paper, we propose a new MPSoC OS emulation framework that enables the study of thermal management strategies at the architectural- and OS-levels with the help of a standard FPGA. This framework includes the hardware and software components needed to accurately model complex MPSoCs architectures, and to test the effects of run-time thermal management strategies at the OS/middleware level with real-life inputs. Our results show that migration overhead is negligible w.r.t. temperature timings, enabling the development of thermal-aware migration strategies. Moreover, the effectiveness of the monitoring and feedback mechanism provides an emulation performance only ten times slower than real time.

Multi-Processor Operating System Emulation Framework with Thermal Feedback for Systems-on-Chip

ACQUAVIVA, ANDREA;BENINI, LUCA;
2007

Abstract

Multi-Processor System-On-Chip (MPSoC) can provide the performance levels required by high-end embedded applications. However, they do so at the price of an increasing power density, which may lead to thermal runaway if coupled with low-cost packaging and cooling. Hence, mechanisms to efficiently evaluate the effectiveness of advanced thermal-aware operating-system (OS) strategies (e.g. task migration) onto the available MPSoC hardware are needed. In this paper, we propose a new MPSoC OS emulation framework that enables the study of thermal management strategies at the architectural- and OS-levels with the help of a standard FPGA. This framework includes the hardware and software components needed to accurately model complex MPSoCs architectures, and to test the effects of run-time thermal management strategies at the OS/middleware level with real-life inputs. Our results show that migration overhead is negligible w.r.t. temperature timings, enabling the development of thermal-aware migration strategies. Moreover, the effectiveness of the monitoring and feedback mechanism provides an emulation performance only ten times slower than real time.
2007
Proceedings of 17th ACM Great Lakes Symposium on VLSI (GLSVLSI) (2007)
311
316
S. Carta; A. Acquaviva; P. G. Del Valle; M. Pittau; D. Atienza; F. Rincon; G. De Micheli; L. Benini; J. M. Mendias;
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/49254
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 10
social impact