PerioGlas (PG) is an silicate-based (i.e. anorganic) material used for grafting periodontal osseous defects since the ninety whereas P-15 is an analog of the cell binding domain of collagen (i.e. organic material) that is successfully used in clinical trial to promote bone formation. However, how PG (i.e anorganic material) and P-15 (i.e. collagen) differentially alter osteoblast activity to promote bone formation is unknown. We therefore attempted to get more insight by using microRNA microarray techniques to investigate the translation process in osteoblasts differentially exposed to PG and P-15. We identified 3 up-regulated miRNA (i.e. mir-30b, mir-26a, mir-92) and 8 down-regulated miRNA (i.e. mir-337, mir-377, mir-25, mir-200b, mir-129, mir-373, mir-133b, mir-489). The data reported are, to our knowledge, the first study on translation regulation in osteoblatsts differentially exposed to cell binding domain of collagen and to silicate-based material. Both enhance the translation of several miRNA belonging to osteogenetic genes, but P-15 acts preferentially on homeobox genes

Palmieri A, Pezzetti F, Brunelli G, Zollino I, Scapoli L, Martinelli M, et al. (2007). Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone. JOURNAL OF BIOMEDICAL SCIENCE, 14, 777-782.

Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone.

PALMIERI, ANNALISA;PEZZETTI, FURIO;SCAPOLI, LUCA;MARTINELLI, MARCELLA;ARLOTTI, MARZIA;
2007

Abstract

PerioGlas (PG) is an silicate-based (i.e. anorganic) material used for grafting periodontal osseous defects since the ninety whereas P-15 is an analog of the cell binding domain of collagen (i.e. organic material) that is successfully used in clinical trial to promote bone formation. However, how PG (i.e anorganic material) and P-15 (i.e. collagen) differentially alter osteoblast activity to promote bone formation is unknown. We therefore attempted to get more insight by using microRNA microarray techniques to investigate the translation process in osteoblasts differentially exposed to PG and P-15. We identified 3 up-regulated miRNA (i.e. mir-30b, mir-26a, mir-92) and 8 down-regulated miRNA (i.e. mir-337, mir-377, mir-25, mir-200b, mir-129, mir-373, mir-133b, mir-489). The data reported are, to our knowledge, the first study on translation regulation in osteoblatsts differentially exposed to cell binding domain of collagen and to silicate-based material. Both enhance the translation of several miRNA belonging to osteogenetic genes, but P-15 acts preferentially on homeobox genes
2007
Palmieri A, Pezzetti F, Brunelli G, Zollino I, Scapoli L, Martinelli M, et al. (2007). Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone. JOURNAL OF BIOMEDICAL SCIENCE, 14, 777-782.
Palmieri A; Pezzetti F; Brunelli G; Zollino I; Scapoli L; Martinelli M; Arlotti M; Carinci F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/48310
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact