An integrated monitoring, of chemical, microbiological and ecotoxicological parameters, was performed for a biotreatability study of polycyclic aromatic hydrocarbons (PAHs)—contaminated brackish sediments. Three slurry reactors were prepared, consisting of (a) a slurry with sediment and seawater called TQ slurry, to evaluate the intrinsic bioremediation potential, (b) a slurry with the addition of a selected microbial consotrium called BIO slurry, to evaluate the bioaugmentation effect, (c) a slurry with the addition of Soya lecithin called LEC slurry, to evaluate the effect of the addition of a natural surfactant. Biodegradation results showed that both BIO and LEC slurries enhanced PAHs removal, increasing the biodegradation rate for 5- and 6-ring PAHs. Furthermore, ecotoxicological response (Microtoxs assay on whole sediment, aqueous extract and organic extract) demonstrated a detoxification of the PAHs initial mixture only for BIO slurry. The findings that aerobic PAHs degradation can be stimulated via inoculation with adapted sediment bacteria suggest that a bioaugmentation process may be a useful strategy for ex-situ treatment.
F. Abbondanzi, L. Bruzzi, T. Campisi, A. Frezzati, R. Guerra, A. Iacondini (2006). Biotreatability of Polycyclic Aromatic Hydrocarbons in Brackish Sediments: Preliminary Studies of an Integrated Monitoring. INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 57, 214-221 [10.1016/j.ibiod.2006.02.007].
Biotreatability of Polycyclic Aromatic Hydrocarbons in Brackish Sediments: Preliminary Studies of an Integrated Monitoring
ABBONDANZI, FEDERICA;BRUZZI, LUIGI;CAMPISI, TIZIANA;GUERRA, ROBERTA;IACONDINI, ANTONELLA
2006
Abstract
An integrated monitoring, of chemical, microbiological and ecotoxicological parameters, was performed for a biotreatability study of polycyclic aromatic hydrocarbons (PAHs)—contaminated brackish sediments. Three slurry reactors were prepared, consisting of (a) a slurry with sediment and seawater called TQ slurry, to evaluate the intrinsic bioremediation potential, (b) a slurry with the addition of a selected microbial consotrium called BIO slurry, to evaluate the bioaugmentation effect, (c) a slurry with the addition of Soya lecithin called LEC slurry, to evaluate the effect of the addition of a natural surfactant. Biodegradation results showed that both BIO and LEC slurries enhanced PAHs removal, increasing the biodegradation rate for 5- and 6-ring PAHs. Furthermore, ecotoxicological response (Microtoxs assay on whole sediment, aqueous extract and organic extract) demonstrated a detoxification of the PAHs initial mixture only for BIO slurry. The findings that aerobic PAHs degradation can be stimulated via inoculation with adapted sediment bacteria suggest that a bioaugmentation process may be a useful strategy for ex-situ treatment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.