We show that the number of fully packed loop configurations corresponding to a matching with m nested arches is polynomial in m if m is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11 (2004), Article #R13].

F. Caselli, C. Krattenthaler, B. Lass, P. Nadeau (2006). On the number of fully packed loop configurations with a fixed associated matching. ELECTRONIC JOURNAL OF COMBINATORICS, 11(2), 1-43.

On the number of fully packed loop configurations with a fixed associated matching

CASELLI, FABRIZIO;
2006

Abstract

We show that the number of fully packed loop configurations corresponding to a matching with m nested arches is polynomial in m if m is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11 (2004), Article #R13].
2006
F. Caselli, C. Krattenthaler, B. Lass, P. Nadeau (2006). On the number of fully packed loop configurations with a fixed associated matching. ELECTRONIC JOURNAL OF COMBINATORICS, 11(2), 1-43.
F. Caselli; C. Krattenthaler; B. Lass; P. Nadeau
File in questo prodotto:
File Dimensione Formato  
1873-PDFfile-1952-1-10-20120117.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 505.32 kB
Formato Adobe PDF
505.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/42120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 11
social impact