We show that the number of fully packed loop configurations corresponding to a matching with m nested arches is polynomial in m if m is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11 (2004), Article #R13].
F. Caselli, C. Krattenthaler, B. Lass, P. Nadeau (2006). On the number of fully packed loop configurations with a fixed associated matching. ELECTRONIC JOURNAL OF COMBINATORICS, 11(2), 1-43.
On the number of fully packed loop configurations with a fixed associated matching
CASELLI, FABRIZIO;
2006
Abstract
We show that the number of fully packed loop configurations corresponding to a matching with m nested arches is polynomial in m if m is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11 (2004), Article #R13].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1873-PDFfile-1952-1-10-20120117.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
505.32 kB
Formato
Adobe PDF
|
505.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.