Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein’s equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.
Roberto Bonezzi, Emanuele Latini, Andrew Waldron (2010). Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics. PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 82, 064037-064047 [10.1103/PhysRevD.82.064037].
Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics
BONEZZI, ROBERTO;LATINI, EMANUELE;
2010
Abstract
Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein’s equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.