In this paper, an automated laboratory setup for the characterization of microwave and millimeter-wave electron devices under dc small- and large-signal operations is described, which is based on a generalized technology-independent bias system. The biasing parameters adopted, which are a linear combination between currents and voltages at the device ports, allow for a complete characterization of the desired empirical data (e.g., multifrequency S-matrix) throughout all the regions, in which the quiescent operation of the device can be conventionally divided without any need for switching between the different biasing strategies. The lookup tables of the experimental data obtained, which are carried out homogeneously versus the same couple of bias parameters of the quiescent regions investigated independently, are particularly suitable for the characterization of the empirical nonlinear dynamic models for the electron device.
P. A. Traverso, A. Raffo, M. Pirazzini, A. Santarelli, F. Filicori (2006). Automated Microwave-Device Characterization Setup Based on a Technology-Independent Generalized Bias System. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 55, 1390-1396 [10.1109/TIM.2006.877717].
Automated Microwave-Device Characterization Setup Based on a Technology-Independent Generalized Bias System
TRAVERSO, PIER ANDREA;SANTARELLI, ALBERTO;FILICORI, FABIO
2006
Abstract
In this paper, an automated laboratory setup for the characterization of microwave and millimeter-wave electron devices under dc small- and large-signal operations is described, which is based on a generalized technology-independent bias system. The biasing parameters adopted, which are a linear combination between currents and voltages at the device ports, allow for a complete characterization of the desired empirical data (e.g., multifrequency S-matrix) throughout all the regions, in which the quiescent operation of the device can be conventionally divided without any need for switching between the different biasing strategies. The lookup tables of the experimental data obtained, which are carried out homogeneously versus the same couple of bias parameters of the quiescent regions investigated independently, are particularly suitable for the characterization of the empirical nonlinear dynamic models for the electron device.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.