In this paper we prove an invariant Harnack inequality on Carnot–Carathéodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an “abstract” formulation of a technique recently introduced by Caffarelli and Silvestre. In addition, we write explicitly the Poisson kernel for a class of degenerate subelliptic equations in product-type Carnot groups.
Fausto Ferrari, Bruno Franchi (2015). Harnack inequality for fractional sub-Laplacians in Carnot groups. MATHEMATISCHE ZEITSCHRIFT, 279(1-2), 435-458 [10.1007/s00209-014-1376-5].
Harnack inequality for fractional sub-Laplacians in Carnot groups
FERRARI, FAUSTO;FRANCHI, BRUNO
2015
Abstract
In this paper we prove an invariant Harnack inequality on Carnot–Carathéodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an “abstract” formulation of a technique recently introduced by Caffarelli and Silvestre. In addition, we write explicitly the Poisson kernel for a class of degenerate subelliptic equations in product-type Carnot groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ferrari_franchi_MZ.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
552.69 kB
Formato
Adobe PDF
|
552.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.