Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the
deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in
the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as ‘‘open-sea convection’’. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic
biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
John Murray Roberts, Christian Tamburini, Miquel Canals, Xavier Durrieu de Madron, Loïc Houpert, Dominique Lefèvre, et al. (2013). Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface. PLOS ONE, 8(7), e67523-e67523-10 [10.1371/journal.pone.0067523].
Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface
John Murray Roberts;Christian Tamburini;Miquel Canals;Xavier Durrieu de Madron;Loïc Houpert;Dominique Lefèvre;Séverine Martini;Fabrizio D'Ortenzio;Anne Robert;Pierre Testor;Juan Antonio Aguilar;Imen Al Samarai;Arnaud Albert;Michel André;Marco Anghinolfi;Gisela Anton;Shebli Anvar;Miguel Ardid;Ana Carolina Assis Jesus;Tri L. Astraatmadja;Jean Jacques Aubert;Bruny Baret;Stéphane Basa;Vincent Bertin;BIAGI, SIMONE;Armando Bigi;Ciro Bigongiari;Claudio Bogazzi;Manuel Bou Cabo;Boutayeb Bouhou;Mieke C. Bouwhuis;Jurgen Brunner;José Busto;Francisco Camarena;Antonio Capone;Christina Cârloganu;CARMINATI, GIADA;John Carr;Stefano Cecchini;Ziad Charif;Philippe Charvis;Tommaso Chiarusi;Marco Circella;Rosa Coniglione;Heide Costantini;Paschal Coyle;Christian Curtil;Patrick Decowski;Ivan Dekeyser;Anne Deschamps;Corinne Donzaud;Damien Dornic;Hasankiadeh Q. Dorosti;Doriane Drouhin;Thomas Eberl;Umberto Emanuele;Jean Pierre Ernenwein;Stéphanie Escoffier;Paolo Fermani;Marcelino Ferri;Vincenzo Flaminio;Florian Folger;Ulf Fritsch;Jean Luc Fuda;Salvatore Galatà;Pascal Gay;GIACOMELLI, GIORGIO MARIA;Valentina Giordano;Juan Pablo Gómez González;Kay Graf;Goulven Guillard;Garadeb Halladjian;Gregory Hallewell;Hans van Haren;Joris Hartman;Aart J. Heijboer;Yann Hello;Juan Jose Hernández Rey;Bjoern Herold;Jurgen Hößl;Ching Cheng Hsu;Marteen de Jong;Matthias Kadler;Oleg Kalekin;Alexander Kappes;Uli Katz;Oksana Kavatsyuk;Paul Kooijman;Claudio Kopper;Antoine Kouchner;Ingo Kreykenbohm;Vladimir Kulikovskiy;Robert Lahmann;Patrick Lamare;Giuseppina Larosa;Dario Lattuada;Gordon Lim;Domenico Lo Presti;Herbert Loehner;Sotiris Loucatos;Salvatore Mangano;Michel Marcelin;MARGIOTTA, ANNARITA;Juan Antonio Martinez Mora;Athina Meli;Teresa Montaruli;Luciano Moscoso;Holger Motz;Max Neff;Emma nuel Nezri;Dimitris Palioselitis;Gabriela E. Păvălaş;Kevin Payet;Patrice Payre;Jelena Petrovic;Paolo Piattelli;Nicolas Picot Clemente;Vlad Popa;Thierry Pradier;Eleonora Presani;Chantal Racca;Corey Reed;Giorgio Riccobene;Carsten Richardt;Roland Richter;Colas Rivière;Kathrin Roensch;Andrei Rostovtsev;Joaquin Ruiz Rivas;Marius Rujoiu;Valerio G. Russo;Francisco Salesa;Augustin Sánchez Losa;Piera Sapienza;Friederike Schöck;Jean Pierre Schuller;Fabian Schussler;Rezo Shanidze;Francesco Simeone;Andreas Spies;SPURIO, MAURIZIO;Jos J. M. Steijger;Thierry Stolarczyk;Mauro G. F. Taiuti;Simona Toscano;Bertrand Vallage;Véronique Van Elewyck;Giulia Vannoni;Manuela Vecchi;Pascal Vernin;Guus Wijnker;Jorn Wilms;Els de Wolf;Harold Yepes;Dmitry Zaborov;Juan De Dios Zornoza;Juan Zúñiga
2013
Abstract
The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the
deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in
the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as ‘‘open-sea convection’’. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic
biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
John Murray Roberts, Christian Tamburini, Miquel Canals, Xavier Durrieu de Madron, Loïc Houpert, Dominique Lefèvre, et al. (2013). Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface. PLOS ONE, 8(7), e67523-e67523-10 [10.1371/journal.pone.0067523].
John Murray Roberts;Christian Tamburini;Miquel Canals;Xavier Durrieu de Madron;Loïc Houpert;Dominique Lefèvre;Séverine Martini;Fabrizio D'Ortenzio;Ann...espandi
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/372747
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
67
61
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.