Metal matrix composites reinforced with Al2O3 particles combine the matrix properties with those of the ceramic reinforcement, leading to higher stiffness and superior thermal stability with respect to the corresponding unreinforced alloys. However, their wide application as structural materials needs proper development of a suitable joining processes. The present work describes the results obtained from microstructural (optical and scanning electron microscopy) and mechanical evaluation (hardness, tensile and low-cycle fatigue tests) of an aluminium alloy (AA6061) matrix composite reinforced with 20 vol.% fraction of Al2O3 particles (W6A20A), welded using the friction stir welding process. The mechanical response of the FSW composite was compared with that of the base material and the results were discussed in the light of microstructural modifications induced by the FSW process on the aluminium alloy matrix and on the ceramic reinforcement. The FSW reduced the size of both particles reinforcement and aluminium grains and also led to overaging of the matrix alloys due to the frictional heating during welding. The FSW specimens, tested without any post-weld heat treatment or surface modification showed lower tensile strength and higher elongation to failure respect to the base material. The low-cycle fatigue life of the FSW composite was always lower than that of the base material, mainly at the lower strain-amplitude value. The cyclic stress response curves of the FSW composite showed evidence of progressive hardening to failure, at all cyclic strain-amplitudes, while the base material showed a progressive softening.
L. CESCHINI, I. BOROMEI, G. MINAK, A. MORRI, F. TARTERINI (2007). Microstructure, tensile and fatigue properties of AA6061/20vol.%Al2O3p Friction Stir Welded joints. COMPOSITES. PART A: APPLIED SCIENCE AND MANUFACTURING, 38, 1200-1210 [10.1016/j.compositesa.2006.06.009].
Microstructure, tensile and fatigue properties of AA6061/20vol.%Al2O3p Friction Stir Welded joints
CESCHINI, LORELLA;BOROMEI, IURI;MINAK, GIANGIACOMO;MORRI, ALESSANDRO;TARTERINI, FABRIZIO
2007
Abstract
Metal matrix composites reinforced with Al2O3 particles combine the matrix properties with those of the ceramic reinforcement, leading to higher stiffness and superior thermal stability with respect to the corresponding unreinforced alloys. However, their wide application as structural materials needs proper development of a suitable joining processes. The present work describes the results obtained from microstructural (optical and scanning electron microscopy) and mechanical evaluation (hardness, tensile and low-cycle fatigue tests) of an aluminium alloy (AA6061) matrix composite reinforced with 20 vol.% fraction of Al2O3 particles (W6A20A), welded using the friction stir welding process. The mechanical response of the FSW composite was compared with that of the base material and the results were discussed in the light of microstructural modifications induced by the FSW process on the aluminium alloy matrix and on the ceramic reinforcement. The FSW reduced the size of both particles reinforcement and aluminium grains and also led to overaging of the matrix alloys due to the frictional heating during welding. The FSW specimens, tested without any post-weld heat treatment or surface modification showed lower tensile strength and higher elongation to failure respect to the base material. The low-cycle fatigue life of the FSW composite was always lower than that of the base material, mainly at the lower strain-amplitude value. The cyclic stress response curves of the FSW composite showed evidence of progressive hardening to failure, at all cyclic strain-amplitudes, while the base material showed a progressive softening.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.