Background The evaluation of intestinal trophism, mainly the mucosal layer, is an important issue in various conditions associated with injury, atrophy, recovery, and healing of the gut. The aim of the present study was to evaluate the kinetics of the proliferation and apoptosis of enterocytes by immunohistochemistry and to assess the complexity of intestinal mucosa by fractal dimension (FD) analysis in Solea solea fed different experimental diets. Results Histomorphological evaluation of all intestinal segments did not show signs of degeneration or inflammation. Cell proliferation index and FD were significantly reduced with a diet high in mussel meal (MM; p = 0.0034 and p = 0.01063, respectively), while apoptotic index did not show any significant difference for the same comparison (p = 0.3859). Linear regression analysis between apoptotic index (independent variable) and FD (dependent variable) showed a statistically significant inverse relationship (p = 0.002528). Linear regression analysis between cell proliferation index (independent variable) and FD (dependent variable) did not show any significant correlation (p = 0.131582). Conclusions The results demonstrated that diets containing increasing levels of mussel meal in substitution of fishmeal did not incite a hyperplastic response of the intestinal mucosa. The mussel meal, which is derived from molluscs, could mimic the characteristics of the sole’s natural prey, being readily digestible, even without increasing the absorptive surface of intestinal mucosa. Interestingly, from this study emerged that FD could be used as a numeric indicator complementary to in situ quantification methods to measure intestinal trophism, in conjunction with functional parameters.

Proliferation, apoptosis, and fractal dimension analysis for the quantification of intestinal trophism in sole (Solea solea) fed mussel meal diets

SIRRI, RUBINA;BIANCO, CARLO;BONALDO, ALESSIO;SARLI, GIUSEPPE;MANDRIOLI, LUCIANA
2014

Abstract

Background The evaluation of intestinal trophism, mainly the mucosal layer, is an important issue in various conditions associated with injury, atrophy, recovery, and healing of the gut. The aim of the present study was to evaluate the kinetics of the proliferation and apoptosis of enterocytes by immunohistochemistry and to assess the complexity of intestinal mucosa by fractal dimension (FD) analysis in Solea solea fed different experimental diets. Results Histomorphological evaluation of all intestinal segments did not show signs of degeneration or inflammation. Cell proliferation index and FD were significantly reduced with a diet high in mussel meal (MM; p = 0.0034 and p = 0.01063, respectively), while apoptotic index did not show any significant difference for the same comparison (p = 0.3859). Linear regression analysis between apoptotic index (independent variable) and FD (dependent variable) showed a statistically significant inverse relationship (p = 0.002528). Linear regression analysis between cell proliferation index (independent variable) and FD (dependent variable) did not show any significant correlation (p = 0.131582). Conclusions The results demonstrated that diets containing increasing levels of mussel meal in substitution of fishmeal did not incite a hyperplastic response of the intestinal mucosa. The mussel meal, which is derived from molluscs, could mimic the characteristics of the sole’s natural prey, being readily digestible, even without increasing the absorptive surface of intestinal mucosa. Interestingly, from this study emerged that FD could be used as a numeric indicator complementary to in situ quantification methods to measure intestinal trophism, in conjunction with functional parameters.
2014
Rubina Sirri;Carlo Bianco;Gionata De Vico;Francesca Carella;Alessio Bonaldo;Giuseppe Sarli;Giada Tondini;Luciana Mandrioli
File in questo prodotto:
File Dimensione Formato  
Sirri et al., 2014.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/313323
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact