We present a wireless sensor network (WSN) for monitoring indoor air quality, which is crucial for people's comfort, health, and safety because they spend a large percentage of time in indoor environments. A major concern in such networks is energy efficiency because gas sensors are power-hungry, and the sensor node must operate unattended for several years on a battery power supply. A system with aggressive energy management at the sensor level, node level, and network level is presented. The node is designed with very low sleep current consumption (only 8 μ A), and it contains a metal oxide semiconductor gas sensor and a pyroelectric infrared (PIR) sensor. Furthermore, the network is multimodal; it exploits information from auxiliary sensors, such as PIR sensors about the presence of people and from the neighbor nodes about gas concentration to modify the behavior of the node and the measuring frequency of the gas concentration. In this way, we reduce the nodes' activity and energy requirements, while simultaneously providing a reliable service. To evaluate our approach and the benefits of the context-aware adaptive sampling, we simulate an application scenario which demonstrates a significant lifetime extension (several years) compared to the continuously-driven gas sensor. In March 2012, we deployed the WSN with 36 nodes in a four-story building and by now the performance has confirmed models and expectations

Vana Jelicic, Michele Magno, Davide Brunelli, Giacomo Paci, Luca Benini (2013). Context-Adaptive Multimodal Wireless Sensor Network for Energy-Efficient Gas Monitoring. IEEE SENSORS JOURNAL, 13(1), 328-338 [10.1109/JSEN.2012.2215733].

Context-Adaptive Multimodal Wireless Sensor Network for Energy-Efficient Gas Monitoring

MAGNO, MICHELE;BRUNELLI, DAVIDE;PACI, GIACOMO;BENINI, LUCA
2013

Abstract

We present a wireless sensor network (WSN) for monitoring indoor air quality, which is crucial for people's comfort, health, and safety because they spend a large percentage of time in indoor environments. A major concern in such networks is energy efficiency because gas sensors are power-hungry, and the sensor node must operate unattended for several years on a battery power supply. A system with aggressive energy management at the sensor level, node level, and network level is presented. The node is designed with very low sleep current consumption (only 8 μ A), and it contains a metal oxide semiconductor gas sensor and a pyroelectric infrared (PIR) sensor. Furthermore, the network is multimodal; it exploits information from auxiliary sensors, such as PIR sensors about the presence of people and from the neighbor nodes about gas concentration to modify the behavior of the node and the measuring frequency of the gas concentration. In this way, we reduce the nodes' activity and energy requirements, while simultaneously providing a reliable service. To evaluate our approach and the benefits of the context-aware adaptive sampling, we simulate an application scenario which demonstrates a significant lifetime extension (several years) compared to the continuously-driven gas sensor. In March 2012, we deployed the WSN with 36 nodes in a four-story building and by now the performance has confirmed models and expectations
2013
Vana Jelicic, Michele Magno, Davide Brunelli, Giacomo Paci, Luca Benini (2013). Context-Adaptive Multimodal Wireless Sensor Network for Energy-Efficient Gas Monitoring. IEEE SENSORS JOURNAL, 13(1), 328-338 [10.1109/JSEN.2012.2215733].
Vana Jelicic;Michele Magno;Davide Brunelli;Giacomo Paci;Luca Benini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/306518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 168
  • ???jsp.display-item.citation.isi??? 136
social impact