Stochastic volatility models are important tools for studying the behavior of many financial markets. For this reason a number of versions have been introduced and studied in the recent literature. The goal is to review and compare some of these alternatives by using Bayesian procedures. The quantity used to assess the goodness-of-fit is the Bayes factor, whereas the ability to forecast the volatility has been tested through the computation of the one-step-ahead value-at-risk (VaR). Model estimation has been carried out through adaptive Markov chain Monte Carlo (MCMC) procedures. The marginal likelihood, necessary to compute the Bayes factor, has been computed through reduced runs of the same MCMC algorithm and through an auxiliary particle filter. The empirical analysis is based on the study of three international financial indexes.

D. Raggi, S. Bordignon (2006). Comparing stochastic volatility models through Monte Carlo simulation. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 50, 1678-1699.

Comparing stochastic volatility models through Monte Carlo simulation

RAGGI, DAVIDE;BORDIGNON, SILVANO
2006

Abstract

Stochastic volatility models are important tools for studying the behavior of many financial markets. For this reason a number of versions have been introduced and studied in the recent literature. The goal is to review and compare some of these alternatives by using Bayesian procedures. The quantity used to assess the goodness-of-fit is the Bayes factor, whereas the ability to forecast the volatility has been tested through the computation of the one-step-ahead value-at-risk (VaR). Model estimation has been carried out through adaptive Markov chain Monte Carlo (MCMC) procedures. The marginal likelihood, necessary to compute the Bayes factor, has been computed through reduced runs of the same MCMC algorithm and through an auxiliary particle filter. The empirical analysis is based on the study of three international financial indexes.
2006
D. Raggi, S. Bordignon (2006). Comparing stochastic volatility models through Monte Carlo simulation. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 50, 1678-1699.
D. Raggi; S. Bordignon
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/28464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact