Eukaryotic cells have evolved to possess a distinct subcellular compartment, the nucleus, separated from the cytoplasm in a manner that allows the precise operation of the chromatin, thereby permitting controlled access to the regulatory elements in the DNA for transcription and replication. In the cytoplasm, genetic information contained in the DNA sequence is translated into proteins, including enzymes that catalyze various reactions, such as metabolic processes, energy control, and responses to changing environments. One mechanism that regulates these events involves phosphoinositide turnover signaling, which generates a lipid second messenger, diacylglycerol (DG). Since DG acts as a potent activator of several signaling molecules, it should be tightly regulated to keep cellular responsiveness within a physiological range. DG kinase (DGK) metabolizes DG by phosphorylating it to generate phosphatidic acid, thus serving as a critical regulator of DG signaling. Phosphoinositide turnover is employed differentially in the nucleus and the cytoplasm. A member of the DGK family, DGKζ, localizes to the nucleus in various cell types and is considered to regulate nuclear DG signaling. Recent studies have provided evidence that DGKζ shuttles between the nucleus and the cytoplasm in neurons under pathophysiological conditions. Transport of a signal regulator between the nucleus and the cytoplasm should be a critical function for maintaining basic processes in the nucleus, such as cell cycle regulation and gene expression, and to ensure communication between nuclear processes and cytoplasmic functions. In this review, a series of studies on nucleocytoplasmic translocation of DGKζ have been summarized, and the functional implications of this phenomenon in postmitotic neurons and cancer cells under stress conditions are discussed.

DGKζ under stress conditions: “to be nuclear or cytoplasmic, that is the question” / Goto K.; Tanaka T.; Nakano T.; Okada M.; Hozumi Y.; Topham M.K.; Martelli A.M.. - In: ADVANCES IN BIOLOGICAL REGULATION. - ISSN 2212-4926. - STAMPA. - 54:(2014), pp. 242-253. [10.1016/j.jbior.2013.08.007]

DGKζ under stress conditions: “to be nuclear or cytoplasmic, that is the question”

MARTELLI, ALBERTO MARIA
2014

Abstract

Eukaryotic cells have evolved to possess a distinct subcellular compartment, the nucleus, separated from the cytoplasm in a manner that allows the precise operation of the chromatin, thereby permitting controlled access to the regulatory elements in the DNA for transcription and replication. In the cytoplasm, genetic information contained in the DNA sequence is translated into proteins, including enzymes that catalyze various reactions, such as metabolic processes, energy control, and responses to changing environments. One mechanism that regulates these events involves phosphoinositide turnover signaling, which generates a lipid second messenger, diacylglycerol (DG). Since DG acts as a potent activator of several signaling molecules, it should be tightly regulated to keep cellular responsiveness within a physiological range. DG kinase (DGK) metabolizes DG by phosphorylating it to generate phosphatidic acid, thus serving as a critical regulator of DG signaling. Phosphoinositide turnover is employed differentially in the nucleus and the cytoplasm. A member of the DGK family, DGKζ, localizes to the nucleus in various cell types and is considered to regulate nuclear DG signaling. Recent studies have provided evidence that DGKζ shuttles between the nucleus and the cytoplasm in neurons under pathophysiological conditions. Transport of a signal regulator between the nucleus and the cytoplasm should be a critical function for maintaining basic processes in the nucleus, such as cell cycle regulation and gene expression, and to ensure communication between nuclear processes and cytoplasmic functions. In this review, a series of studies on nucleocytoplasmic translocation of DGKζ have been summarized, and the functional implications of this phenomenon in postmitotic neurons and cancer cells under stress conditions are discussed.
2014
DGKζ under stress conditions: “to be nuclear or cytoplasmic, that is the question” / Goto K.; Tanaka T.; Nakano T.; Okada M.; Hozumi Y.; Topham M.K.; Martelli A.M.. - In: ADVANCES IN BIOLOGICAL REGULATION. - ISSN 2212-4926. - STAMPA. - 54:(2014), pp. 242-253. [10.1016/j.jbior.2013.08.007]
Goto K.; Tanaka T.; Nakano T.; Okada M.; Hozumi Y.; Topham M.K.; Martelli A.M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/273514
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact