This paper deals with the energy-balancing passivity-based control of linear, lossless, distributed port-Hamiltonian systems. Once inputs and outputs have been chosen to obtain a well-defined boundary control system, the problem is tackled by determining, at first, the class of energy functions that can be employed in the energy-shaping procedure, together with the corresponding boundary state-feedback control actions. To verify the existence of solutions for the closed-loop system, the equivalence between energy-balancing and energy-Casimir methods is shown. For the latter approach, the conditions for having a particular set of Casimir functions in closed-loop are given, and then the existence of the associated semigroup is studied. Since both the methods provide the same control action, the existence result determined for the energy-Casimir method is valid also for the energy-balancing controller. Simple stability is obtained by shaping the open-loop Hamiltonian, while asymptotic stability is ensured if proper pervasive (boundary) damping is present. In this respect, a stability criterion is discussed. The methodology is illustrated with the help of a simple example, i.e. a Timoshenko beam with full-actuation on one side, and an inertia on the other side.

Macchelli A (2013). Boundary energy shaping of linear distributed port-Hamiltonian systems. EUROPEAN JOURNAL OF CONTROL, 19(6), 521-528 [10.1016/j.ejcon.2013.10.002].

Boundary energy shaping of linear distributed port-Hamiltonian systems

MACCHELLI, ALESSANDRO
2013

Abstract

This paper deals with the energy-balancing passivity-based control of linear, lossless, distributed port-Hamiltonian systems. Once inputs and outputs have been chosen to obtain a well-defined boundary control system, the problem is tackled by determining, at first, the class of energy functions that can be employed in the energy-shaping procedure, together with the corresponding boundary state-feedback control actions. To verify the existence of solutions for the closed-loop system, the equivalence between energy-balancing and energy-Casimir methods is shown. For the latter approach, the conditions for having a particular set of Casimir functions in closed-loop are given, and then the existence of the associated semigroup is studied. Since both the methods provide the same control action, the existence result determined for the energy-Casimir method is valid also for the energy-balancing controller. Simple stability is obtained by shaping the open-loop Hamiltonian, while asymptotic stability is ensured if proper pervasive (boundary) damping is present. In this respect, a stability criterion is discussed. The methodology is illustrated with the help of a simple example, i.e. a Timoshenko beam with full-actuation on one side, and an inertia on the other side.
2013
Macchelli A (2013). Boundary energy shaping of linear distributed port-Hamiltonian systems. EUROPEAN JOURNAL OF CONTROL, 19(6), 521-528 [10.1016/j.ejcon.2013.10.002].
Macchelli A
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/266093
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact