The repetitive DNA content of the stick-insect species Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric), and Bacillus atticus (obligate parthenogenetic) was analyzed through the survey of random genomic libraries roughly corresponding to 0.006% of the genome. By repeat masking, 19 families of transposable elements were identified (two LTR and six non-LTR retrotransposons; 11 DNA transposons). Moreover, a de novo analysis revealed, among the three libraries, the first MITE family observed in polyneopteran genomes. On the whole, transposable element abundance represented 23.3% of the genome in B. rossius, 22.9% in B. atticus, and 18% in B. grandii. Tandem repeat content in the three libraries is much lower: 1.32%, 0.64%, and 1.86% in B. rossius, B. grandii, and B. atticus, respectively. Microsatellites are the most abundant in all species. Minisatellites were only found in B. rossius and B. atticus, and fivemonomersbelonging to the Bag320 satellite family were detected in B. atticus. Assuming the survey provides adequate representation of the relative genome, the obligate parthenogenetic species (B. atticus), compared with the other two species analyzed, does not show a lower transposable element content, as expected from some theoretical and empirical studies.
RICCI M., LUCHETTI A., BONANDIN L., MANTOVANI B. (2013). Random DNA libraries from three species of the stick-insect genus Bacillus (Insecta: Phasmida): repetitive DNA characterization and first observation of polyneopteran MITEs. GENOME, 56(12), 729-735 [10.1139/gen-2013-0107].
Random DNA libraries from three species of the stick-insect genus Bacillus (Insecta: Phasmida): repetitive DNA characterization and first observation of polyneopteran MITEs.
RICCI, MARCO;LUCHETTI, ANDREA;BONANDIN, LIVIA;MANTOVANI, BARBARA
2013
Abstract
The repetitive DNA content of the stick-insect species Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric), and Bacillus atticus (obligate parthenogenetic) was analyzed through the survey of random genomic libraries roughly corresponding to 0.006% of the genome. By repeat masking, 19 families of transposable elements were identified (two LTR and six non-LTR retrotransposons; 11 DNA transposons). Moreover, a de novo analysis revealed, among the three libraries, the first MITE family observed in polyneopteran genomes. On the whole, transposable element abundance represented 23.3% of the genome in B. rossius, 22.9% in B. atticus, and 18% in B. grandii. Tandem repeat content in the three libraries is much lower: 1.32%, 0.64%, and 1.86% in B. rossius, B. grandii, and B. atticus, respectively. Microsatellites are the most abundant in all species. Minisatellites were only found in B. rossius and B. atticus, and fivemonomersbelonging to the Bag320 satellite family were detected in B. atticus. Assuming the survey provides adequate representation of the relative genome, the obligate parthenogenetic species (B. atticus), compared with the other two species analyzed, does not show a lower transposable element content, as expected from some theoretical and empirical studies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.