Social system networks with high data rates and limited storage will discard data if the system cannot connect and upload the data to a central server. We address the challenge of limited storage capacity in mobile health systems during network partitions with a heuristic that achieves efficiency in storage capacity by modifying the granularity of the medical data during long intercontact periods. Patterns in the connectivity, reception rate, distance, and location are extracted from the social system network and leveraged in the global algorithm and online heuristic. In the global algorithm, the stochastic nature of the data is modeled with maximum likelihood estimation based on the distribution of the reception rates. In the online heuristic, the correlation between system position and the reception rate is combined with patterns in human mobility to estimate the intracontact and intercontact time. The online heuristic performs well with a low data loss of 2.1%-6.1%.

T Massey, G Marfia, A Stoelting, R Tomasi, M A Spirito, M Sarrafzadeh, et al. (2011). Leveraging Social System Networks in Ubiquitous High-Data-Rate Health Systems. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 15, 491-498 [10.1109/TITB.2010.2087414].

Leveraging Social System Networks in Ubiquitous High-Data-Rate Health Systems

MARFIA, GUSTAVO;G. Pau
2011

Abstract

Social system networks with high data rates and limited storage will discard data if the system cannot connect and upload the data to a central server. We address the challenge of limited storage capacity in mobile health systems during network partitions with a heuristic that achieves efficiency in storage capacity by modifying the granularity of the medical data during long intercontact periods. Patterns in the connectivity, reception rate, distance, and location are extracted from the social system network and leveraged in the global algorithm and online heuristic. In the global algorithm, the stochastic nature of the data is modeled with maximum likelihood estimation based on the distribution of the reception rates. In the online heuristic, the correlation between system position and the reception rate is combined with patterns in human mobility to estimate the intracontact and intercontact time. The online heuristic performs well with a low data loss of 2.1%-6.1%.
2011
T Massey, G Marfia, A Stoelting, R Tomasi, M A Spirito, M Sarrafzadeh, et al. (2011). Leveraging Social System Networks in Ubiquitous High-Data-Rate Health Systems. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 15, 491-498 [10.1109/TITB.2010.2087414].
T Massey;G Marfia;A Stoelting;R Tomasi;M A Spirito;M Sarrafzadeh;G Pau
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/261514
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact