Transmitochondrial cytoplasmic hybrids (cybrids) are a well established model system to reveal the effects of mitochondrial DNA (mtDNA) mutations on cell metabolism excluding the interferences of a different nuclear background. The m.3571insC mutation in MTND1 gene of respiratory complex I (CI) is commonly detected in oncocytic tumors, in which it causes a severe CI dysfunction leading to an energetic impairment when present above 83% mutant load. To assess whether the energetic deficit may alter the mitochondrial proteome, OS-78 and OS-93 cybrid cell lines bearing two different degrees of the m.3571insC mutation (78% and 92.8%, respectively) and control cybrids bearing wild-type mtDNA (CC) were analyzed. Two-dimensional electrophoresis and mass spectrometry revealed significant alterations only in cybrids above the threshold (OS-93). All differentially expressed proteins are decreased. In particular, the level of pyruvate dehydrogenase E1 chain B subunit (E1b), of lipoamide dehydrogenase (E3), the enzyme component of pyruvate and 2-oxoglutarate dehydrogenase complexes and of lactate dehydrogenase B (LDHB) was reduced. Moreover, a significant decrease of the pyruvate dehydrogenase complex activity was found when OS-93 cybrid cells were grown in galactose medium, a metabolic condition that forces cells to use respiration. These results demonstrate that the energetic impairment caused by the almost homoplasmic m.3571insC mutation perturbs cellular metabolism leading to a decreased steady state level of components of very important mitochondrial NAD-dependent dehydrogenases.

Analysis of Mitochondrial Proteome of Cybrid Cells Harbouring a Truncative Mitochondrial DNA Mutation in Respiratory Complex I

IOMMARINI, LUISA;GASPARRE, GIUSEPPE;PORCELLI, ANNA MARIA;
2014

Abstract

Transmitochondrial cytoplasmic hybrids (cybrids) are a well established model system to reveal the effects of mitochondrial DNA (mtDNA) mutations on cell metabolism excluding the interferences of a different nuclear background. The m.3571insC mutation in MTND1 gene of respiratory complex I (CI) is commonly detected in oncocytic tumors, in which it causes a severe CI dysfunction leading to an energetic impairment when present above 83% mutant load. To assess whether the energetic deficit may alter the mitochondrial proteome, OS-78 and OS-93 cybrid cell lines bearing two different degrees of the m.3571insC mutation (78% and 92.8%, respectively) and control cybrids bearing wild-type mtDNA (CC) were analyzed. Two-dimensional electrophoresis and mass spectrometry revealed significant alterations only in cybrids above the threshold (OS-93). All differentially expressed proteins are decreased. In particular, the level of pyruvate dehydrogenase E1 chain B subunit (E1b), of lipoamide dehydrogenase (E3), the enzyme component of pyruvate and 2-oxoglutarate dehydrogenase complexes and of lactate dehydrogenase B (LDHB) was reduced. Moreover, a significant decrease of the pyruvate dehydrogenase complex activity was found when OS-93 cybrid cells were grown in galactose medium, a metabolic condition that forces cells to use respiration. These results demonstrate that the energetic impairment caused by the almost homoplasmic m.3571insC mutation perturbs cellular metabolism leading to a decreased steady state level of components of very important mitochondrial NAD-dependent dehydrogenases.
Clara Musicco;Antonella Cormio;Maria Antonietta Calvaruso;Luisa Iommarini;Giuseppe Gasparre;Anna Maria Porcelli;Anna Maria Timperio;Lello Zolla;Maria Nicola Gadaleta
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/245676
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact