We revisit the debate on the optimal number of firms in the commons in a differential oligopoly game in which firms are either quantity- or price-setting agents. Production exploits a natural resource and involves a negative externality.We calculate the number of firmsmaximising industry profits, finding that it is larger in the Cournot case.While industry structure is always inefficient under Bertrand behaviour, it may or may not be so under Cournot behaviour, depending on parameter values. The comparison of private industry optima reveals that the Cournot steady state welfare level exceeds the corresponding Bertrand magnitude if the weight of the stock of pollution is large enough.

D. Dragone, L. Lambertini, A. Palestini, A. Tampieri (2013). On the Optimal Number of Firms in the Commons: Cournot vs Bertrand. MATHEMATICAL ECONOMICS LETTERS, 1(1), 25-34 [10.1515/mel-2013-0011].

On the Optimal Number of Firms in the Commons: Cournot vs Bertrand

DRAGONE, DAVIDE;LAMBERTINI, LUCA;TAMPIERI, ALESSANDRO
2013

Abstract

We revisit the debate on the optimal number of firms in the commons in a differential oligopoly game in which firms are either quantity- or price-setting agents. Production exploits a natural resource and involves a negative externality.We calculate the number of firmsmaximising industry profits, finding that it is larger in the Cournot case.While industry structure is always inefficient under Bertrand behaviour, it may or may not be so under Cournot behaviour, depending on parameter values. The comparison of private industry optima reveals that the Cournot steady state welfare level exceeds the corresponding Bertrand magnitude if the weight of the stock of pollution is large enough.
2013
D. Dragone, L. Lambertini, A. Palestini, A. Tampieri (2013). On the Optimal Number of Firms in the Commons: Cournot vs Bertrand. MATHEMATICAL ECONOMICS LETTERS, 1(1), 25-34 [10.1515/mel-2013-0011].
D. Dragone; L. Lambertini; A. Palestini; A. Tampieri
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/206225
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact