A discontinuous Galerkin method has been developed for strain gradient-dependent damage. The strength of this method lies in the fact that it allows the use of C0 interpolation functions for continuum theories involving higher-order derivatives, while in a conventional framework at least C1 interpolations are required. The discontinuous Galerkin formulation thereby offers significant potential for engineering computations with strain gradient-dependent models. When using basis functions with a low degree of continuity, jump conditions arise at element edges which are incorporated in the weak form. In addition to the formulation itself, a detailed study of the convergence properties of the method for various element types is presented and an error analysis is undertaken. Numerical results of some one- and two-dimensional problems are presented and discussed.

A discontinuous Galerkin method for strain gradient-dependent damage: Study of interpolations and convergence

MOLARI, LUISA;UBERTINI, FRANCESCO
2006

Abstract

A discontinuous Galerkin method has been developed for strain gradient-dependent damage. The strength of this method lies in the fact that it allows the use of C0 interpolation functions for continuum theories involving higher-order derivatives, while in a conventional framework at least C1 interpolations are required. The discontinuous Galerkin formulation thereby offers significant potential for engineering computations with strain gradient-dependent models. When using basis functions with a low degree of continuity, jump conditions arise at element edges which are incorporated in the weak form. In addition to the formulation itself, a detailed study of the convergence properties of the method for various element types is presented and an error analysis is undertaken. Numerical results of some one- and two-dimensional problems are presented and discussed.
L. Molari; G. N. Wells; K. Garikipati; F. Ubertini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/19557
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact