Background: A deeper knowledge of the pancreatic cancer (PDAC) biology is needed to improve the prognosis of the disease. Methods: 17 PDAC samples were collected by ultrasound-guided biopsy used for DNA and RNA extraction. 14 samples were analyzed by high resolution copy number analysis (CNA) on Affymetrix SNP array 6.0 and with segmentation algorithm against a reference of 270 Ceu HapMap individuals (Partek Genomic Suite). 17 samples were analyzed by whole transcriptome massively parallel sequencing, performed at 75x2 bp on a HiScanSQ Illumina platform. An average of 7, 3x107 reads per sample were generated, with a mean read depth of 50X. Single nucleotide variants (SNVs) were detected with SNVMix2 and compared with genetic variation databases (dbSNP, 1000genomes, Cosmic). Non-synonimous SNVs were analyzed with the predictors SNPs and GO and PROVEAN. Results: CNA results in 9/14 samples exhibited both macroscopic and cryptic cytogenetic alterations, with a mean of 10 CNA per patient. Most frequent gains were observed in 18q11.2 involving GATA6 (3/14) and 19q13 targeting AKT2 (3/14) while hotspot deletions were found on 18q21 (7/14), 17p13 (6/14), 9p21.3 (6/14), 15q (5/14) and 1q35 (4/14). RNAseq showed that samples exhibited a mean of 145 (range: 61-240) non-synonimous SNVs, of which 16 on average are potentially disease-related. Merging copy number and RNAseq data we highlighted the major oncogenic hits of PDAC, confirming the prevalence (14/17) of KRAS mutations, in one case also NRAS (G13D), and the three oncosuppressor CDKN2A (mutated in 3 cases and deleted in 6 cases, in hetero- or homozygosity), SMAD4 (altered by point mutation or gene deletion in 7/14), and TP53 (lost in 6/14 and mutated in 5/17). The signaling pathways affected were: KRAS/MAPK, TGFbeta and integrin signaling, proliferation and apoptosis, DNA damage response, and epithelial to mesenchymal transition. Moreover we found new oncogenic alterations, such as HMGCR, that displayed mutations in 17% of the analyzed patients (3/17). Conclusions: NGS combined with high resolution cytogenetic analysis can improve the understanding of pancreatic carcinogenesis.

Marina Macchini, Annalisa Astolfi, Valentina Indio, Silvia Vecchiarelli, Elisa Grassi, Carla Serra, et al. (2013). Whole-transcriptome paired-end sequencing and the pancreatic cancer genetic landscape.

Whole-transcriptome paired-end sequencing and the pancreatic cancer genetic landscape

MACCHINI, MARINA;ASTOLFI, ANNALISA;INDIO, VALENTINA;VECCHIARELLI, SILVIA;SERRA, CARLA;CASADEI, RICCARDO;SANTINI, DONATELLA;D'AMBRA, MARIELDA;RICCI, CLAUDIO;MINNI, FRANCESCO;BIASCO, GUIDO;DI MARCO, MARIACRISTINA
2013

Abstract

Background: A deeper knowledge of the pancreatic cancer (PDAC) biology is needed to improve the prognosis of the disease. Methods: 17 PDAC samples were collected by ultrasound-guided biopsy used for DNA and RNA extraction. 14 samples were analyzed by high resolution copy number analysis (CNA) on Affymetrix SNP array 6.0 and with segmentation algorithm against a reference of 270 Ceu HapMap individuals (Partek Genomic Suite). 17 samples were analyzed by whole transcriptome massively parallel sequencing, performed at 75x2 bp on a HiScanSQ Illumina platform. An average of 7, 3x107 reads per sample were generated, with a mean read depth of 50X. Single nucleotide variants (SNVs) were detected with SNVMix2 and compared with genetic variation databases (dbSNP, 1000genomes, Cosmic). Non-synonimous SNVs were analyzed with the predictors SNPs and GO and PROVEAN. Results: CNA results in 9/14 samples exhibited both macroscopic and cryptic cytogenetic alterations, with a mean of 10 CNA per patient. Most frequent gains were observed in 18q11.2 involving GATA6 (3/14) and 19q13 targeting AKT2 (3/14) while hotspot deletions were found on 18q21 (7/14), 17p13 (6/14), 9p21.3 (6/14), 15q (5/14) and 1q35 (4/14). RNAseq showed that samples exhibited a mean of 145 (range: 61-240) non-synonimous SNVs, of which 16 on average are potentially disease-related. Merging copy number and RNAseq data we highlighted the major oncogenic hits of PDAC, confirming the prevalence (14/17) of KRAS mutations, in one case also NRAS (G13D), and the three oncosuppressor CDKN2A (mutated in 3 cases and deleted in 6 cases, in hetero- or homozygosity), SMAD4 (altered by point mutation or gene deletion in 7/14), and TP53 (lost in 6/14 and mutated in 5/17). The signaling pathways affected were: KRAS/MAPK, TGFbeta and integrin signaling, proliferation and apoptosis, DNA damage response, and epithelial to mesenchymal transition. Moreover we found new oncogenic alterations, such as HMGCR, that displayed mutations in 17% of the analyzed patients (3/17). Conclusions: NGS combined with high resolution cytogenetic analysis can improve the understanding of pancreatic carcinogenesis.
2013
J Clin Oncol 31, 2013 (suppl; abstr 4048)
4048
4048
Marina Macchini, Annalisa Astolfi, Valentina Indio, Silvia Vecchiarelli, Elisa Grassi, Carla Serra, et al. (2013). Whole-transcriptome paired-end sequencing and the pancreatic cancer genetic landscape.
Marina Macchini; Annalisa Astolfi; Valentina Indio; Silvia Vecchiarelli; Elisa Grassi; Carla Serra; Riccardo Casadei; Donatella Santini; Marielda D'Am...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/153073
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact