The effect of ring fluorination on the structural and dynamical properties of the flexible model molecule 2-fluorobenzylamine was studied by rotational spectroscopy in free-jet expansion and quantum chemical methods. The complete potential energy surface originating from the flexibility of the aminic side chain has been calculated at the B3LYP/6-311++G** level of theory and the stable geometries were also characterized with MP2/6-311++G**. The rotational spectra show the presence of two of the predicted four stable conformers: the global minimum (I), in which the side chain’s dihedral angle with the phenyl plane is almost perpendicular, is stabilized by an intramolecular hydrogen bond between the fluorine atom and one hydrogen of the aminic group; and a second conformer II (EIIEI5 kJmol1) in which the dihedral angle is smaller and the amino group points towards the aromatic ortho hydrogen atom. This conformation is characterized by a tunneling motion between two equivalent positions of the amino group with respect to the phenyl plane, which splits the rotational transition. The ortho fluorination increases, with respect to benzylamine, the tunneling splitting of this motion by four orders of magnitude. The motion is analyzed with a one-dimensional flexible model, which allows estimation of the energy barrier for the transition state as approximately 8.0 kJmol1.
Camilla Calabrese, Assimo Maris, Luca Evangelisti, Walther Caminati, Sonia Melandri (2013). Fluorine Substitution Effects on Flexibility and Tunneling Pathways: The Rotational Spectrum of 2-Fluorobenzylamine. CHEMPHYSCHEM, 14, 1943-1950 [10.1002/cphc.201300121].
Fluorine Substitution Effects on Flexibility and Tunneling Pathways: The Rotational Spectrum of 2-Fluorobenzylamine
CALABRESE, CAMILLA;MARIS, ASSIMO;EVANGELISTI, LUCA;CAMINATI, WALTHER;MELANDRI, SONIA
2013
Abstract
The effect of ring fluorination on the structural and dynamical properties of the flexible model molecule 2-fluorobenzylamine was studied by rotational spectroscopy in free-jet expansion and quantum chemical methods. The complete potential energy surface originating from the flexibility of the aminic side chain has been calculated at the B3LYP/6-311++G** level of theory and the stable geometries were also characterized with MP2/6-311++G**. The rotational spectra show the presence of two of the predicted four stable conformers: the global minimum (I), in which the side chain’s dihedral angle with the phenyl plane is almost perpendicular, is stabilized by an intramolecular hydrogen bond between the fluorine atom and one hydrogen of the aminic group; and a second conformer II (EIIEI5 kJmol1) in which the dihedral angle is smaller and the amino group points towards the aromatic ortho hydrogen atom. This conformation is characterized by a tunneling motion between two equivalent positions of the amino group with respect to the phenyl plane, which splits the rotational transition. The ortho fluorination increases, with respect to benzylamine, the tunneling splitting of this motion by four orders of magnitude. The motion is analyzed with a one-dimensional flexible model, which allows estimation of the energy barrier for the transition state as approximately 8.0 kJmol1.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.