In the present study, we considered the Raman spectra of atrazine, prometryn and simetryn, in the solid form and in polar and apolar solvents, extending the investigation in the very diluted aqueous solutions (ppm) range by using the SERS technique. We performed theoretical calculations at the B3LYP/aug-ccpVQZ level on the three triazines, alone and in solution with polar and apolar solvents. An excellent agreement between theoretical and experimental frequencies was reached, with differences lying within few wavenumbers. The small differences observed can be ascribed to the solid crystalline phase and can be caused by local deviations in the uniformity of the crystalline field or to a coupling with lattice vibrations. Also the theoretical and experimental peak intensities well agreed and in most cases lied within ±10%, the differences being ascribed to the local non-homogeneity of dielectric properties in the crystal. Moreover, this behavior confirmed the rigidity of the molecules and that their structure was not involved during the solution process. The theoretical SERS spectra at B3LYP/6-311+G(d,p) level of triazines bound to an Ag2 metal cluster offered an acceptable qualitative agreement with the experimental ones, suggesting that the stronger interaction site of triazines with Ag2 was on the less sterical hindered aromatic nitrogen atom, namely forming the N6 Ag2 molecular complex with atrazine, and the N2 Ag2 or N4 Ag2 molecular complexes with simetryn and prometryn. The agreement between calculated and experimental SERS spectra was not as good as that observed for the Raman spectra of pure compounds, but the trend of the theoretical spectra offered a useful guideline for the comprehension of the interaction sites and of the structural modification after adsorption on silver particles.

Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides

BONORA, SERGIO;MARIS, ASSIMO;TUGNOLI, VITALIANO;DI FOGGIA, MICHELE
2013

Abstract

In the present study, we considered the Raman spectra of atrazine, prometryn and simetryn, in the solid form and in polar and apolar solvents, extending the investigation in the very diluted aqueous solutions (ppm) range by using the SERS technique. We performed theoretical calculations at the B3LYP/aug-ccpVQZ level on the three triazines, alone and in solution with polar and apolar solvents. An excellent agreement between theoretical and experimental frequencies was reached, with differences lying within few wavenumbers. The small differences observed can be ascribed to the solid crystalline phase and can be caused by local deviations in the uniformity of the crystalline field or to a coupling with lattice vibrations. Also the theoretical and experimental peak intensities well agreed and in most cases lied within ±10%, the differences being ascribed to the local non-homogeneity of dielectric properties in the crystal. Moreover, this behavior confirmed the rigidity of the molecules and that their structure was not involved during the solution process. The theoretical SERS spectra at B3LYP/6-311+G(d,p) level of triazines bound to an Ag2 metal cluster offered an acceptable qualitative agreement with the experimental ones, suggesting that the stronger interaction site of triazines with Ag2 was on the less sterical hindered aromatic nitrogen atom, namely forming the N6 Ag2 molecular complex with atrazine, and the N2 Ag2 or N4 Ag2 molecular complexes with simetryn and prometryn. The agreement between calculated and experimental SERS spectra was not as good as that observed for the Raman spectra of pure compounds, but the trend of the theoretical spectra offered a useful guideline for the comprehension of the interaction sites and of the structural modification after adsorption on silver particles.
2013
Sergio Bonora; Enrico Benassi; Assimo Maris; Vitaliano Tugnoli; Stefano Ottani; Michele Di Foggia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/144444
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 37
social impact