BACKGROUND: The metabolic alterations of cancer cells represent an opportunity for developing selective antineoplastic treatments. We investigated the therapeutic potential of ST1326, an inhibitor of carnitine-palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid (FA) import into mitochondria. METHODS: ST1326 was tested on in vitro and in vivo models of Burkitt's lymphoma, in which c-myc, which drives cellular demand for FA metabolism, is highly overexpressed. We performed assays to evaluate the effect of ST1326 on proliferation, FA oxidation, and FA mitochondrial channeling in Raji cells. The therapeutic efficacy of ST1326 was tested by treating Eµ-myc mice (control: n = 29; treatment: n = 24 per group), an established model of c-myc-mediated lymphomagenesis. Experiments were performed on spleen-derived c-myc-overexpressing B cells to clarify the role of c-myc in conferring sensitivity to ST1326. Survival was evaluated with Kaplan-Meier analyses. All statistical tests were two-sided. RESULTS: ST1326 blocked both long- and short-chain FA oxidation and showed a strong cytotoxic effect on Burkitt's lymphoma cells (on Raji cells at 72 hours: half maximal inhibitory concentration = 8.6 μM). ST1326 treatment induced massive cytoplasmic lipid accumulation, impairment of proper mitochondrial FA channeling, and reduced availability of cytosolic acetyl coenzyme A, a fundamental substrate for de novo lipogenesis. Moreover, treatment with ST1326 in Eµ-myc transgenic mice prevented tumor formation (P = .01), by selectively impairing the growth of spleen-derived primary B cells overexpressing c-myc (wild-type cells + ST1326 vs. Eµ-myc cells + ST1326: 99.75% vs. 57.5%, difference = 42.25, 95% confidence interval of difference = 14% to 70%; P = .01). CONCLUSIONS: Our data indicate that it is possible to tackle c-myc-driven tumorigenesis by altering lipid metabolism and exploiting the neoplastic cell addiction to FA oxidation.

Pacilli A, Calienni M, Margarucci S, D'Apolito M, Petillo O, Rocchi L, et al. (2013). Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 105, 489-498 [10.1093/jnci/djt030].

Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis.

PACILLI, ANNALISA;CALIENNI, MARIA;ROCCHI, LAURA;PASQUINELLI, GIANANDREA;MONTANARO, LORENZO
2013

Abstract

BACKGROUND: The metabolic alterations of cancer cells represent an opportunity for developing selective antineoplastic treatments. We investigated the therapeutic potential of ST1326, an inhibitor of carnitine-palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid (FA) import into mitochondria. METHODS: ST1326 was tested on in vitro and in vivo models of Burkitt's lymphoma, in which c-myc, which drives cellular demand for FA metabolism, is highly overexpressed. We performed assays to evaluate the effect of ST1326 on proliferation, FA oxidation, and FA mitochondrial channeling in Raji cells. The therapeutic efficacy of ST1326 was tested by treating Eµ-myc mice (control: n = 29; treatment: n = 24 per group), an established model of c-myc-mediated lymphomagenesis. Experiments were performed on spleen-derived c-myc-overexpressing B cells to clarify the role of c-myc in conferring sensitivity to ST1326. Survival was evaluated with Kaplan-Meier analyses. All statistical tests were two-sided. RESULTS: ST1326 blocked both long- and short-chain FA oxidation and showed a strong cytotoxic effect on Burkitt's lymphoma cells (on Raji cells at 72 hours: half maximal inhibitory concentration = 8.6 μM). ST1326 treatment induced massive cytoplasmic lipid accumulation, impairment of proper mitochondrial FA channeling, and reduced availability of cytosolic acetyl coenzyme A, a fundamental substrate for de novo lipogenesis. Moreover, treatment with ST1326 in Eµ-myc transgenic mice prevented tumor formation (P = .01), by selectively impairing the growth of spleen-derived primary B cells overexpressing c-myc (wild-type cells + ST1326 vs. Eµ-myc cells + ST1326: 99.75% vs. 57.5%, difference = 42.25, 95% confidence interval of difference = 14% to 70%; P = .01). CONCLUSIONS: Our data indicate that it is possible to tackle c-myc-driven tumorigenesis by altering lipid metabolism and exploiting the neoplastic cell addiction to FA oxidation.
2013
Pacilli A, Calienni M, Margarucci S, D'Apolito M, Petillo O, Rocchi L, et al. (2013). Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 105, 489-498 [10.1093/jnci/djt030].
Pacilli A;Calienni M;Margarucci S;D'Apolito M;Petillo O;Rocchi L;Pasquinelli G;Nicolai R;Koverech A;Calvani M;Peluso G;Montanaro L
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/137182
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 81
social impact