It is recognized that the uniformity of mould temperature fields during the composite curing process has a vital important effect on the component and, thereby, the product quality. Previous studies mainly considered the temperature along the thickness direction of the mould or composite component, or under a rather simple external environment, leading to some deviations from the actual composite autoclave curing process. In this paper, taking into consideration some factors such as auxiliaries, framed mould and forced convection phenomenon inside an autoclave, a simulation model has been established on the mould curing temperature field in an autoclave. On this basis, simulation and thermal analysis of the framed mould temperature fields with regard to composite structure and material system in the aviation industry have been performed. Besides, the influences of the time of heat preservation, heating rate have been also investigated, and two nondimensional factors are introduced for evaluating temperature uniformity and heating quality. It is found that increasing the time of heat preservation and the number of periods could improve the uniformity significantly, and, thus, the improvements of heating efficiency and uniformity of temperature field are achieved, and that a smaller heating rate would give much better heating quality.

Xie G.N., Liu J., Zang W.H., Lorenzini G., Biserni C. (2013). Simulation and Improvement of Temperature Distributions of a Framed Mould during the Autoclave Composite Curing Process. JOURNAL OF ENGINEERING THERMOPHYSICS, 22, 43-61 [10.1134/S1810232813010062].

Simulation and Improvement of Temperature Distributions of a Framed Mould during the Autoclave Composite Curing Process

BISERNI, CESARE
2013

Abstract

It is recognized that the uniformity of mould temperature fields during the composite curing process has a vital important effect on the component and, thereby, the product quality. Previous studies mainly considered the temperature along the thickness direction of the mould or composite component, or under a rather simple external environment, leading to some deviations from the actual composite autoclave curing process. In this paper, taking into consideration some factors such as auxiliaries, framed mould and forced convection phenomenon inside an autoclave, a simulation model has been established on the mould curing temperature field in an autoclave. On this basis, simulation and thermal analysis of the framed mould temperature fields with regard to composite structure and material system in the aviation industry have been performed. Besides, the influences of the time of heat preservation, heating rate have been also investigated, and two nondimensional factors are introduced for evaluating temperature uniformity and heating quality. It is found that increasing the time of heat preservation and the number of periods could improve the uniformity significantly, and, thus, the improvements of heating efficiency and uniformity of temperature field are achieved, and that a smaller heating rate would give much better heating quality.
2013
Xie G.N., Liu J., Zang W.H., Lorenzini G., Biserni C. (2013). Simulation and Improvement of Temperature Distributions of a Framed Mould during the Autoclave Composite Curing Process. JOURNAL OF ENGINEERING THERMOPHYSICS, 22, 43-61 [10.1134/S1810232813010062].
Xie G.N.; Liu J.; Zang W.H.; Lorenzini G.; Biserni C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/134257
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 26
social impact