This study aims to understand the potential of bulk FinFET technology from the perspective of sub-and near-threshold logic circuits down to 100-mV bias voltage. Measurements are performed on bulk FinFETs with a channel length of 60 nm, a fin height of 33 nm, and a fin width of only 14 nm and with a high-k/metal-gate stack having an equivalent thickness in inversion of 1.6 nm. For comparison purposes, measurements are also performed on bulk planar FETs with the same channel length and similar gate stack. FinFETs show a stronger dependence of the drain current on the gate voltage and a lower dependence on the drain and body biases w.r.t. planar devices. After adjusting for the different threshold voltages, FinFETs exhibit perfect balance between n- and p-FETs at any applied bias in the sub-and near-threshold regimes. As a consequence, FinFET logic circuits have significantly improved voltage scalability from the perspective of dc robustness and of performance/energy.

Understanding the Basic Advantages of Bulk FinFETs for Sub- and Near-Threshold Logic Circuits From Device Measurements

MAGNONE, PAOLO;
2012

Abstract

This study aims to understand the potential of bulk FinFET technology from the perspective of sub-and near-threshold logic circuits down to 100-mV bias voltage. Measurements are performed on bulk FinFETs with a channel length of 60 nm, a fin height of 33 nm, and a fin width of only 14 nm and with a high-k/metal-gate stack having an equivalent thickness in inversion of 1.6 nm. For comparison purposes, measurements are also performed on bulk planar FETs with the same channel length and similar gate stack. FinFETs show a stronger dependence of the drain current on the gate voltage and a lower dependence on the drain and body biases w.r.t. planar devices. After adjusting for the different threshold voltages, FinFETs exhibit perfect balance between n- and p-FETs at any applied bias in the sub-and near-threshold regimes. As a consequence, FinFET logic circuits have significantly improved voltage scalability from the perspective of dc robustness and of performance/energy.
2012
Crupi F.; Alioto M.; Franco J.; Magnone P.; Togo M.; Horiguchi N.; Groeseneken G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/129766
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 23
social impact