The aim of the present work was to evaluate the potential for superplastic deformation of the AZ31 magnesium alloy produced by Twin Roll Casting (TRC), a continuous casting technology able to convert molten metals directly into a coiled strip. In order to develop a superplastic microstructure, the TRC sheets were heated at 400 °C for 2 h, then rolled by multiple passes with re-heating between them, with a total thickness reduction of about 60%. The superplastic behaviour of the alloy was studied by tensile tests, carried out at in the temperature range from 400 °C to 500 °C and with initial strain rates of 1-10-3 s-1 and 5.10-4 s-1. The microstructural and fractographic characterization of the alloy was carried out by means of optical (OM) and scanning electron microscopy (SEM). The tensile tests evidenced a superplastic behaviour of the processed AZ31 Mg alloy, with a maximum elongation to failure of about 500% at 460 °C, with a strain rate of 5-10-4 s" 1. The microstructure of the alloy after superplastic deformation showed fine and equiaxed grains, with a large fraction of high angle boundaries. Analyses of the fracture surfaces evidenced flow localization around the grains, suggesting that grain boundary sliding (GBS) was the main deformation mechanism. Failure occurred by cavitation, mainly at the higher testing temperature, due to the prevailing effect of grain growth

L. CESCHINI, M. EL MEHTEDI, A. MORRI, G. SAMBOGNA, S. SPIGARELLI (2009). Superplastic Deformation of Twin Roll Cast AZ31 magnesium alloy. Zurigo : TRANS TECH PUBLICATIONS LTD [10.4028/3-908453-09-7.267].

Superplastic Deformation of Twin Roll Cast AZ31 magnesium alloy

CESCHINI, LORELLA;MORRI, ALESSANDRO;SAMBOGNA, GIULIANO;
2009

Abstract

The aim of the present work was to evaluate the potential for superplastic deformation of the AZ31 magnesium alloy produced by Twin Roll Casting (TRC), a continuous casting technology able to convert molten metals directly into a coiled strip. In order to develop a superplastic microstructure, the TRC sheets were heated at 400 °C for 2 h, then rolled by multiple passes with re-heating between them, with a total thickness reduction of about 60%. The superplastic behaviour of the alloy was studied by tensile tests, carried out at in the temperature range from 400 °C to 500 °C and with initial strain rates of 1-10-3 s-1 and 5.10-4 s-1. The microstructural and fractographic characterization of the alloy was carried out by means of optical (OM) and scanning electron microscopy (SEM). The tensile tests evidenced a superplastic behaviour of the processed AZ31 Mg alloy, with a maximum elongation to failure of about 500% at 460 °C, with a strain rate of 5-10-4 s" 1. The microstructure of the alloy after superplastic deformation showed fine and equiaxed grains, with a large fraction of high angle boundaries. Analyses of the fracture surfaces evidenced flow localization around the grains, suggesting that grain boundary sliding (GBS) was the main deformation mechanism. Failure occurred by cavitation, mainly at the higher testing temperature, due to the prevailing effect of grain growth
2009
RECENT DEVELOPMENTS IN THE PROCESSING AND APPLICATIONS OF STRUCTURAL METALS AND ALLOYS
267
277
L. CESCHINI, M. EL MEHTEDI, A. MORRI, G. SAMBOGNA, S. SPIGARELLI (2009). Superplastic Deformation of Twin Roll Cast AZ31 magnesium alloy. Zurigo : TRANS TECH PUBLICATIONS LTD [10.4028/3-908453-09-7.267].
L. CESCHINI; M. EL MEHTEDI; A. MORRI; G. SAMBOGNA; S. SPIGARELLI;
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/119390
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 3
social impact