In this study the anti-angiogenic action of a novel non-peptide RGDS-analog named RAM was tested in vitro and in vivo. RAM inhibited FGF-2-induced chemotaxis by 80% in an adhesion-independent way. Further, it induced HUVEC-apoptosis in collagen-seeded HUVEC, indicating that such pro-apoptotic effect was adhesion-independent. In vivo studies revealed that RAM inhibited FGF-2 induced angiogenesis by 60% in the mouse Matrigel-assay and in the chicken-egg chorion-allantoic membrane assay. Finally, RAM was markedly more stable in serum as compared to the template RGDS and after 24 h incubation in 100% serum was significantly more active than RGDS. Taken together these results show that RAM exerts anti-chemotactic and pro-apoptotic effects, by an unexpected adhesion-independent mechanism, as we have recently shown for the template RGDS molecule [Blood 103 (2004) 4180], and has in vivo relevant anti-angiogenic properties, with marked stability in serum; therefore, RAM represents a novel promising anti-angiogenic molecule.
AGUZZI M.S., FACCHIANO F., RIBATTI D., GAETA R., CASADIO R., ROSSI I., et al. (2004). A novel RGD-analog inhibits angiogenesis in vitro and in vivo. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 321, 809-814 [10.1016/j.bbrc.2004.07.036].
A novel RGD-analog inhibits angiogenesis in vitro and in vivo
CASADIO, RITA;ROSSI, IVAN;
2004
Abstract
In this study the anti-angiogenic action of a novel non-peptide RGDS-analog named RAM was tested in vitro and in vivo. RAM inhibited FGF-2-induced chemotaxis by 80% in an adhesion-independent way. Further, it induced HUVEC-apoptosis in collagen-seeded HUVEC, indicating that such pro-apoptotic effect was adhesion-independent. In vivo studies revealed that RAM inhibited FGF-2 induced angiogenesis by 60% in the mouse Matrigel-assay and in the chicken-egg chorion-allantoic membrane assay. Finally, RAM was markedly more stable in serum as compared to the template RGDS and after 24 h incubation in 100% serum was significantly more active than RGDS. Taken together these results show that RAM exerts anti-chemotactic and pro-apoptotic effects, by an unexpected adhesion-independent mechanism, as we have recently shown for the template RGDS molecule [Blood 103 (2004) 4180], and has in vivo relevant anti-angiogenic properties, with marked stability in serum; therefore, RAM represents a novel promising anti-angiogenic molecule.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.