Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.

Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment / A.M. Martelli; F. Chiarini; C. Evangelisti; A. Cappellini; F. Buontempo; D. Bressanin; M. Fini; J.A. McCubrey. - In: ONCOTARGET. - ISSN 1949-2553. - ELETTRONICO. - 3:(2012), pp. 371-394.

Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment.

MARTELLI, ALBERTO MARIA;C. Evangelisti;A. Cappellini;BUONTEMPO, FRANCESCA;BRESSANIN, DANIELA;
2012

Abstract

Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
2012
Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment / A.M. Martelli; F. Chiarini; C. Evangelisti; A. Cappellini; F. Buontempo; D. Bressanin; M. Fini; J.A. McCubrey. - In: ONCOTARGET. - ISSN 1949-2553. - ELETTRONICO. - 3:(2012), pp. 371-394.
A.M. Martelli; F. Chiarini; C. Evangelisti; A. Cappellini; F. Buontempo; D. Bressanin; M. Fini; J.A. McCubrey
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/117023
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 63
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 96
social impact