In this paper, we rely on the Constructal method to optimize the geometry of a Y-shaped cavity embedded into a solid conducting wall. The structure has four degrees of freedom. The objective is to minimize the global thermal resistance between the solid and the cavity. The optimization procedure has demonstrated that for larger solids, a cavity shaped as T led to a minimization of the global thermal resistance, while the opposite effect is observed for tall solids, where the optimal shapes are reached when the bifurcated branches deeply penetrates the solid in the vertical direction, according to the Constructal principle of "optimal distribution of imperfections". The three times minimized global thermal resistance of the Y-shaped cavity has been correlated by power laws as a function of its corresponding optimal configurations. Finally, the performance of the Y-shaped intrusion proved to be superior to that of other basic geometries: the optimized global thermal resistances of the Y-shaped cavities obtained for H/L = 1.0, 2.0, and 5.0 were, respectively 66.61%, 55.37%, and 19.05% lower than the optimal T-shaped cavities under the same thermal and geometric conditions. Furthermore, in comparison with the "finger cavity" shaped as C, the Y-shaped cavities increased the thermal performance in 109.12%, 84.45%, 59.32%, and 20.10% for H/L = 0.5, 1.0, 2.0, and 5.0, respectively.

Constructal Design Applied to the Geometric Optimization of Y-shaped Cavities Embedded in a Conducting Medium

BISERNI, CESARE;
2011

Abstract

In this paper, we rely on the Constructal method to optimize the geometry of a Y-shaped cavity embedded into a solid conducting wall. The structure has four degrees of freedom. The objective is to minimize the global thermal resistance between the solid and the cavity. The optimization procedure has demonstrated that for larger solids, a cavity shaped as T led to a minimization of the global thermal resistance, while the opposite effect is observed for tall solids, where the optimal shapes are reached when the bifurcated branches deeply penetrates the solid in the vertical direction, according to the Constructal principle of "optimal distribution of imperfections". The three times minimized global thermal resistance of the Y-shaped cavity has been correlated by power laws as a function of its corresponding optimal configurations. Finally, the performance of the Y-shaped intrusion proved to be superior to that of other basic geometries: the optimized global thermal resistances of the Y-shaped cavities obtained for H/L = 1.0, 2.0, and 5.0 were, respectively 66.61%, 55.37%, and 19.05% lower than the optimal T-shaped cavities under the same thermal and geometric conditions. Furthermore, in comparison with the "finger cavity" shaped as C, the Y-shaped cavities increased the thermal performance in 109.12%, 84.45%, 59.32%, and 20.10% for H/L = 0.5, 1.0, 2.0, and 5.0, respectively.
JOURNAL OF ELECTRONIC PACKAGING
Lorenzini G.; Biserni C.; Isoldi L.A.; Dos Santos E.D.; Rocha L.A.O.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/113783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 44
social impact