Increases in temperature and air pollution influence pollen allergenicity,which is responsible for the dramatic raise in respiratory allergies. To clarify possible underlying mechanisms, an anemophilous pollen (hazel, Corylus avellana), known to be allergenic, and an entomophilous one (apple, Malus domestica), the allergenicity of which was not known, were analysed. The presence also in apple pollen of known fruit allergens and their immunorecognition by serum of an allergic patient were preliminary ascertained, resulting also apple pollen potentially allergenic. Pollens were subjected to simulated stressful conditions, provided by changes in temperature, humidity, and copper and acid rain pollution. In the two pollens exposed to environmental criticalities, viability and germination were negatively affected and different transglutaminase (TGase) gel bands were differently immunodetected with the polyclonal antibody AtPng1p. The enzyme activity increased under stressful treatments and, along with its products, was found to be released outside the pollen with externalisation of TGase being predominant in C. avellana, whose grain presents a different cell wall composition with respect to that of M. domestica. A recombinant plant TGase (AtPng1p) stimulated the secreted phospholipase A2 (sPLA2) activity, that in vivo is present in human mucosa and is involved in inflammation. Similarly, stressed pollen, hazel pollen being the most efficient, stimulated to very different extent sPLA2 activity and putrescine conjugation to sPLA2. We propose that externalised pollen TGase could be one of the mediators of pollen allergenicity, especially under environmental stress induced by climate changes.

Simulated environmental criticalities affect transglutaminase of Malus and Corylus pollens having different allergenic potential

IORIO, ROSA ANNA;DI SANDRO, ALESSIA;PARIS, ROBERTA;PAGLIARANI, GIULIA;TARTARINI, STEFANO;RICCI, GIAMPAOLO;SERAFINI FRACASSINI, DONATELLA;Verderio E;DEL DUCA, STEFANO
2012

Abstract

Increases in temperature and air pollution influence pollen allergenicity,which is responsible for the dramatic raise in respiratory allergies. To clarify possible underlying mechanisms, an anemophilous pollen (hazel, Corylus avellana), known to be allergenic, and an entomophilous one (apple, Malus domestica), the allergenicity of which was not known, were analysed. The presence also in apple pollen of known fruit allergens and their immunorecognition by serum of an allergic patient were preliminary ascertained, resulting also apple pollen potentially allergenic. Pollens were subjected to simulated stressful conditions, provided by changes in temperature, humidity, and copper and acid rain pollution. In the two pollens exposed to environmental criticalities, viability and germination were negatively affected and different transglutaminase (TGase) gel bands were differently immunodetected with the polyclonal antibody AtPng1p. The enzyme activity increased under stressful treatments and, along with its products, was found to be released outside the pollen with externalisation of TGase being predominant in C. avellana, whose grain presents a different cell wall composition with respect to that of M. domestica. A recombinant plant TGase (AtPng1p) stimulated the secreted phospholipase A2 (sPLA2) activity, that in vivo is present in human mucosa and is involved in inflammation. Similarly, stressed pollen, hazel pollen being the most efficient, stimulated to very different extent sPLA2 activity and putrescine conjugation to sPLA2. We propose that externalised pollen TGase could be one of the mediators of pollen allergenicity, especially under environmental stress induced by climate changes.
Iorio R A; Di Sandro A; Paris R; Pagliarani G; Tartarini S; Ricci G; Serafini Fracassini D; Verderio E; Del Duca S
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/110565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact