The 2009 April 6, Mw= 6.3 L’Aquila earthquake occurred within a complex system of NW–SE trending normal faults in the Abruzzi Central Apennines (Italy). We analyse the coseismic deformation as measured by >70 global positioning system (GPS) stations, both from continuous and survey-mode networks, providing unprecedented details for a moderate normal faulting earthquake in Italy from GPS measurements. We use rectangular, uniform-slip, dislocations embedded in an elastic, homogeneous and isotropic half-space and a constrained, non-linear optimization algorithm, to solve for the best-fitting rectangular dislocation geometry and coseismic-slip distribution. We use a bootstrap approach to investigate uncertainties in the model parameters and define confidence bounds for all the inverted parameters. The rupture occurred on a N129 (+8,-7)°E striking and 50(+9,-5)° southwestward dipping normal fault, in agreement with geological observations of surface breaks along the Paganica fault. Our distributed slip model exhibits a zone of relatively higher slip (>60 cm) between ~1.5 and ~11 km depth, along a roughly downdip, NW–SE elongated patch, confined within the fault plane inverted assuming uniform-slip. The highest slip, of the order of ~1 m, occurred on a ~16 km2 area located at ~5 km depth, SE of the mainshock epicentre. The analysis of model resolution suggests that slip at depth below ~5 km can be resolved only at a spatial scale larger than 2 km, so a finer discretization of different asperities within the main patch of coseismic-slip is not allowed by GPS data. We compute the coseismic Coulomb stress changes in the crustal volume affected by the major aftershocks, and compare the results obtained from the uniform-slip and the heterogeneous-slip models. We find that most of the large aftershocks occurred in areas of Coulomb stress increase of 0.2–13 bar and that a deepening of the slip distribution down to a depth greater than 6 km in the SE part of the fault plane, in agreement with the inverted slip model, can explain the deepest, April 7, Mw 5.3 aftershock.

E. Serpelloni, L. Anderlini, M.E. Belardinelli (2012). Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements. GEOPHYSICAL JOURNAL INTERNATIONAL, 188, 473-489 [10.1111/j.1365-246X.2011.05279.x].

Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements

ANDERLINI, LETIZIA;BELARDINELLI, MARIA ELINA
2012

Abstract

The 2009 April 6, Mw= 6.3 L’Aquila earthquake occurred within a complex system of NW–SE trending normal faults in the Abruzzi Central Apennines (Italy). We analyse the coseismic deformation as measured by >70 global positioning system (GPS) stations, both from continuous and survey-mode networks, providing unprecedented details for a moderate normal faulting earthquake in Italy from GPS measurements. We use rectangular, uniform-slip, dislocations embedded in an elastic, homogeneous and isotropic half-space and a constrained, non-linear optimization algorithm, to solve for the best-fitting rectangular dislocation geometry and coseismic-slip distribution. We use a bootstrap approach to investigate uncertainties in the model parameters and define confidence bounds for all the inverted parameters. The rupture occurred on a N129 (+8,-7)°E striking and 50(+9,-5)° southwestward dipping normal fault, in agreement with geological observations of surface breaks along the Paganica fault. Our distributed slip model exhibits a zone of relatively higher slip (>60 cm) between ~1.5 and ~11 km depth, along a roughly downdip, NW–SE elongated patch, confined within the fault plane inverted assuming uniform-slip. The highest slip, of the order of ~1 m, occurred on a ~16 km2 area located at ~5 km depth, SE of the mainshock epicentre. The analysis of model resolution suggests that slip at depth below ~5 km can be resolved only at a spatial scale larger than 2 km, so a finer discretization of different asperities within the main patch of coseismic-slip is not allowed by GPS data. We compute the coseismic Coulomb stress changes in the crustal volume affected by the major aftershocks, and compare the results obtained from the uniform-slip and the heterogeneous-slip models. We find that most of the large aftershocks occurred in areas of Coulomb stress increase of 0.2–13 bar and that a deepening of the slip distribution down to a depth greater than 6 km in the SE part of the fault plane, in agreement with the inverted slip model, can explain the deepest, April 7, Mw 5.3 aftershock.
2012
E. Serpelloni, L. Anderlini, M.E. Belardinelli (2012). Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements. GEOPHYSICAL JOURNAL INTERNATIONAL, 188, 473-489 [10.1111/j.1365-246X.2011.05279.x].
E. Serpelloni; L. Anderlini; M.E. Belardinelli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/110448
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 49
social impact