We show that the Cournot oligopoly game with non-linear market demand can be reformulated as a best-response potential game where the best-response potential function is linear-quadratic in the special case where marginal cost is normalised to zero. We also propose a new approach to show that the open-loop differential game with Ramsey dynamics admits a best-response Hamiltonian potential corresponding to the sum of the best-response potential function of the static game plus the scalar product of transition functions multiplied by the fictitious costate variables. Unlike the original differential game, its best-response representation yields the map of the instantaneous best reply functions.

Dragone D., Lambertini L. , Palestini A. (2012). Static and dynamic best-besponse potential functions for the non-linear Cournot game. OPTIMIZATION, 61(11), 1283-1293 [10.1080/02331934.2010.541457].

Static and dynamic best-besponse potential functions for the non-linear Cournot game

DRAGONE, DAVIDE;LAMBERTINI, LUCA;
2012

Abstract

We show that the Cournot oligopoly game with non-linear market demand can be reformulated as a best-response potential game where the best-response potential function is linear-quadratic in the special case where marginal cost is normalised to zero. We also propose a new approach to show that the open-loop differential game with Ramsey dynamics admits a best-response Hamiltonian potential corresponding to the sum of the best-response potential function of the static game plus the scalar product of transition functions multiplied by the fictitious costate variables. Unlike the original differential game, its best-response representation yields the map of the instantaneous best reply functions.
2012
Dragone D., Lambertini L. , Palestini A. (2012). Static and dynamic best-besponse potential functions for the non-linear Cournot game. OPTIMIZATION, 61(11), 1283-1293 [10.1080/02331934.2010.541457].
Dragone D.; Lambertini L. ; Palestini A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/109354
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact