This paper grounds on the SAPERE project (Self-Aware PERvasive Service Ecosystems), which aims at proposing a multi-agent framework for pervasive computing, based on the idea of making each agent (service, device, human) manifest its existence in the ecosystem by a Live Semantic Annotation (LSA), and of coordinating agent activities by a small and fixed set of so-called eco-laws--sort of chemical-like reactions over patterns of LSAs. System dynamics in SAPERE is complex because of opennes and due to the self-* requirements imposed by the pervasive computing setting: a simulation framework is hence needed for what-if analysis prior to deployment. In this paper we present a prototype simulator we are developing, tested on a crowd steering scenario. Due to the role of chemical-like dynamics, this is based on a variation of an existing SSA (Stochastic Simulation Algorithm), suitable tailored to the specific features of SAPERE, including dynamicity of network topology, pattern-based application of eco-laws, and temporal triggers.

D. Pianini, M. Viroli, S. Montagna (2011). A Simulation Framework for Pervasive Services Ecosystems. AACHEN : Sun SITE Central Europe, RWTH Aachen University.

A Simulation Framework for Pervasive Services Ecosystems

PIANINI, DANILO;VIROLI, MIRKO;MONTAGNA, SARA
2011

Abstract

This paper grounds on the SAPERE project (Self-Aware PERvasive Service Ecosystems), which aims at proposing a multi-agent framework for pervasive computing, based on the idea of making each agent (service, device, human) manifest its existence in the ecosystem by a Live Semantic Annotation (LSA), and of coordinating agent activities by a small and fixed set of so-called eco-laws--sort of chemical-like reactions over patterns of LSAs. System dynamics in SAPERE is complex because of opennes and due to the self-* requirements imposed by the pervasive computing setting: a simulation framework is hence needed for what-if analysis prior to deployment. In this paper we present a prototype simulator we are developing, tested on a crowd steering scenario. Due to the role of chemical-like dynamics, this is based on a variation of an existing SSA (Stochastic Simulation Algorithm), suitable tailored to the specific features of SAPERE, including dynamicity of network topology, pattern-based application of eco-laws, and temporal triggers.
2011
WOA 2011 — XII Workshop Nazionale "Dagli Oggetti agli Agenti"
150
157
D. Pianini, M. Viroli, S. Montagna (2011). A Simulation Framework for Pervasive Services Ecosystems. AACHEN : Sun SITE Central Europe, RWTH Aachen University.
D. Pianini; M. Viroli; S. Montagna
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/108519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact