Cancer stem cells (CSCs) comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts of genetically modified murine models. CSCs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation, and metastasis. The existence of CSCs could explain the high frequency of neoplasia relapse and resistance to all of currently available therapies, including chemotherapy. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is a key regulator of physiological cell processes which include proliferation, differentiation, apoptosis, motility, metabolism, and autophagy. Nevertheless, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences prognosis. Several lines of evidence indicate that this signaling system plays a key role also in CSC biology. Of note, CSCs are more sensitive to pathway inhibition with small molecules when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling transduction pathways between CSCs and healthy stem cells can be identified. Here, we review the evidence which links the signals deriving from the PI3K/Akt/mTOR network with CSC biology, both in hematological and solid tumors. We then highlight how therapeutic targeting of PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome, by eliminating CSCs

Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells

MARTELLI, ALBERTO MARIA;FOLLO, MATILDE YUNG;RAMAZZOTTI, GIULIA;MANZOLI, LUCIA;COCCO, LUCIO ILDEBRANDO
2011

Abstract

Cancer stem cells (CSCs) comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts of genetically modified murine models. CSCs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation, and metastasis. The existence of CSCs could explain the high frequency of neoplasia relapse and resistance to all of currently available therapies, including chemotherapy. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is a key regulator of physiological cell processes which include proliferation, differentiation, apoptosis, motility, metabolism, and autophagy. Nevertheless, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences prognosis. Several lines of evidence indicate that this signaling system plays a key role also in CSC biology. Of note, CSCs are more sensitive to pathway inhibition with small molecules when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling transduction pathways between CSCs and healthy stem cells can be identified. Here, we review the evidence which links the signals deriving from the PI3K/Akt/mTOR network with CSC biology, both in hematological and solid tumors. We then highlight how therapeutic targeting of PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome, by eliminating CSCs
Martelli AM; Evangelisti C; Follo MY; Ramazzotti G; Fini M; Giardino R; Manzoli L; McCubrey JA; Cocco L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/107882
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 95
social impact